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FOREWORD

This Final Report presents the results of an eight-month

project on the design and application of an inflZn nI±

2Ln2un=. The work on this project, conducted under Grant AFOSR

* 81-0115, commenced on 1 April 1981 and was completed on 30 Novem-

ber, 1981.

The research was carried out in the Department of Electrical

Engineering at the University of Kentucky. Those principally

involved were F. M. Brown (principal investigator), D. K. Taylor,

and M. R. Rowlette; the latter two are graduate students who were

supported by funds provided by the University of Kentucky.
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ABSTRACT

Results are presented concerning the design and application

of an inferential processor, a digital machine organized to

process logical data at high rates of speed. When coupled to a

general-purpose digital computer, the inferential processor would

enable reasoning tasks to be carried out rapidly and with little

programming effort. Specific research-efforts discussed in this

report are (a) mechanized inference in Boolean systems, (b)

functional deduction, and (c) inferential analysis of relational

databases.
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I. INTRODUCTION

The objective of the research described in this report has

been to investigate the design and application of an infrznnt-11±

zudzX a machine specialized for rapid processing of Boolean

(i.e., propositional) data. This research is part of a longer-

term effort to mechanize a new approach to reasoning in

- propositional logic. The basic ideas underlying this approach

have been worked out over a period of several years; the practi-

cal implementation of those ideas was first undertaken in 1980,

however, while the principal investigator was at the Air Force

Avionics Laboratory under the sponsorship of the USAF/SCEEE Sum-

mer Faculty Research Program.

The proposed inferential processor, which is intended to

augment the computational power of a general-purpose computer, is

to be a high-speed reasoning system having very general capa-

bility within the domain of propositional logic. It may be imple-

mented either by microprogramming a general-purpose computer or

by attaching to such a computer a special-purpose processor; the

latter implementation [1] is assumed in this report.

Our research during the grant-period has been organized into

the following tasks:

1. Mechanized Inference in Boolean Systems (F.M. Brown);

2. Functional Deduction (F.M. Brown);

3. Boolean Analysis of Relational Databases (D.K. Taylor);

4. Simulation of the Inferential Processor (M.R. Rowlette).

1
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The foregoing research-tasks were undertaken as eight-month

efforts promising the greatest progress toward the objectives

stated in our proposal. We present in this report the results of

the first three tasks; the results of the final task are to

appear in an M.S. thesis which is currently underway.

The objective of the first task, Mechanized Inference in

Boolean Systems, was to develop an organized and coherent theory

of Boolean analysis. The basic inferential operations on systems

of Boolean equations were studied, terminology was established,

and properties fundamental to the operation of the inferential

processor were proved. The objects of the first task were princi-

pally those of clarification, terminology, and proof. In the se-

cond task, Functional Deduction, our object was to investigate a

new application of the processor, one which had only been sket-

ched in our previous research [2). We believe functional deduc-

tion to be a fundamental operation in Boolean analysis; it is the

inverse, essentially, of the much-studied problem of solving

Boolean equations. The results obtained under this task enable

functional deduction to be performed rapidly and efficiently by

the inferential processor. To study its essential features and
illustrate its practical utility, we have applied functional

deduction to the design of economical multiple-output combinatio-

nal circuits.

The objective of the third task, Boolean Analysis of Rela-

tional Databases, was to investigate potential applications of

the inferential processor to database processing. We began by

2



studying the problems associated with relational databases. This

study showed that the generation of keys for a database is a

difficult problem of practical importance. The keys may be deter-

mined if the functional dependencies associated with the database

are known; we therefore devised an algorithm (the first to our

knowledge) for generating the functional dependencies in a given

relational database. This algorithm also produces the full set of

minimal keys for the database. The algorithm was programmed

Sentirely in the logical language PROLOG (3,41, which was used for

two reasons: first, this language is most effective for program-

ming tasks involving logic; second, PROLOG is an "inferential

processor" in software, whose operation we wished to study.

This report is organized in two parts. Part A includes

general background on logical computers and some discussion of

the motivation for our research (Section II), a brief description

of the structure of the inferential processor (Section III), and

discussions of the results obtained under tasks I and 2 above

(Sections IV and V). Part B, originally prepared as an 4.S.

thesis [5], presents the results obtained under task 3.

3
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II. LOGICAL COMPUTERS

We outline in this section the motivation for our research,

whose ultimate object is to produce a logical computer, i.e., a

machine capable of high-speed inferential processing in proposi-

tional (Boolean) logic. Some of the material in the present

section is taken from a proposal [11 prepared during the grant-

period; it is included in this report for completeness.

Propositional logic may be identified roughly with two-

valued Boolean algebra. This form of logic has applications in

many areas, a few of which are logical design [21, the diagnosis

of failures in digital systems [3,4], and the design of

relational databases [51. It is the basis, moreover, for

reasoning in higher-order logics such as the first-order

predicate calculus; the latter is required for applications in

artificial intelligence [6,71. The propositional calculus is

related to the higher-order logics in somewhat the same way that

arithmetic is related to the various fields of mathematical

analysis; it is a structure, useful in itself, on which more

elaborate structures are built.

The range of application of the propositional calculus was

outlined by Ledley (81 as follows: "The propositional calculus

can be applied to many phases of military science and related

problems as well as to business, industry, science, and

government in general. In these applications it serves as an aid

to complex reasoning, e.g., in the analysis and evaluation of

intelligence reports, the preparation and analysis of tactical

I



methods and principles, the formulation and interpretation of

legal statutes, the planning and evaluation of chemical and

biological experiments, the f.)rmulation of psychological and

intelligence examinations, and the formulation and evaluation of

business methods and procedures. All of these and similar

'reasoning' activities and operations can use the propositional

calculus in a fundamental way. More well-known are its

applications to the design of industrial process-control

machines, digital computers, large-scale switching circuitry, and

other forms of information-handling systems. However, the compu-

tational methods of the propositional calculus present serious

and frequently insurmountable difficulties In the solution of ac-

tual problems, and this factor has severely limited its practical

utilization. Consequently the need arises for a systematic way of

formulating, analyzing and -solving propositional functions and

equations."

Notwithstanding the alogicalV nature of its internal oper-

ations, a general-purpose computer is ill-suited to logical com-

putation. For this reason, a number of dedicated logical proces-

sors have been proposed. For a detailed study of logic-machines,

from the UM agna of Ramon Lull in the thirteenth century to the

relay-machines of the 1950's, see Gardner (9]. The electronic ma-

chines relevant to the present project may be put into three

classes: a gnmnt;-xzxifiexx, n2atin-syixzE.a, and 12z3M±f-

A nrn±Zsr:.



All of the argument-verifiers (10-161 known to this investi-

gator (and none of the other kinds of logical computers) have
been designed by logicians. The function of any such machine is

to decide the validity of an argument, i.e., a collection of

premises together with a conclusion. Equation-solving machines

[17-22], on the other hand, have been inspired principally by the

need to solve technological problems. Such machines accept some

representation of a system of Boolean equations and produce a

solution (typically particular rather than general) for a

selected subset of the arguments in terms of the remaining argu-

ments.

Formula-minimizing machines [23-27] have the common aim of

determining simplified sum-of-products (disjunctive normal form)
expressions for propositional functions. The procedures imple-

mented in all of these machines are based on Quine's formulation

(28-30] of the minimization problem, the essential feature of

which is the generation of the 2rimr imiant;s of the given

propositional function. Formula-minimization may at first glance

appear to have little bearing on mechanized inference. It is sig-

nificant, however, for two reasons. First, formula-minimization

is useful in the application of other reasoning processes,

improving the economy and perspicuity of the results obtained.

Second, the existing designs for formula-minimizing machines

represent solutions of a problem that is dominant in the design

of the proposed inferential processor, namely, that of generating

and storing the prime implicants of a propositional function.

7
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Each of the machines cited above carries out a species of

reasoning; each extracts useful information, that is, from a col-

lection of propositional data. None of these machines has emerged

from the laboratory of its birth, however, because none is in any

sense *general-purpose' within the domain of propositional logic.

The element absent in these machines is a rgnIz.jg± $xi ng la 2f

zTening, readily adaptable to argument-verification, equation-

solving, formula-minimization, and any other task involving logi-

cal inference. The proposed inferential processor embodies such a

principle, viz., that the 2liMe rnsgnz 2'ggnrLg characterize, in a

simple and economical way, all conclusions deducible from a

* collection of propositional data.

The technique of automated inference we are investigating is

based on a formulation given by A. Blake in a little-known dis-

sertation [311 published in 1937. The concept of a prime impli-

cant, customarily attributed to a paper published by Quine [281

fourteen years later, as well as all of the presently-known me-

thods for generating prime implicants, were presented in Blake's

dissertation. The application of prime implicants to formula-

minimization was pointed out by Quine and has since been

intensively studied and applied; Blake's application of prim.e

implicants to logical deduction, however, has apparently remained

unnoticed. Blake's principal contribution was to show that a

single rule of inference, that of Hypothetical Syllogism (if P

implies Q and Q implies R, then P implies R), suffices to produce

all of the prime consequences of a collection of propositional

data. Expressed in terms of Boolean algebra, the single operation

8_.



of consensus (which Blake called the *syllogistic resultm) suf-

fices to produce all of the prime implicants of a Boolean func-

tion. This idea is closely related to the "resolution principle"

given by Robinson 1321 in 1965 and now applied in mechanical

theorem- proving (6] and in programming languages, such as PROLOG

[33,34], designed to solve problems in the predicate calculus.

When compared with Blake's use of consensus, the resolution prin-

ciple is formulated in a more general structure (the first-order

predicate calculus) and is applied to a less general problem

(theorem-proving by refutation).

Blake demonstrated the fundamental role of the prime conse-

quences in generating and verifying conclusions. Our research has

shown an additional advantage of the prime consequences, namely,

that they enable the fundamental operations of propositional in-

ference (e.g., elimination of variables, solution of equations in

general and particular form, general of functional antecedents

and consequents) to be conveniently mechanized in a high-speed

processor. Thus a machine that accepts propositional data and

produces their prime consequences can be made general-purpose in

the domain of propositional logic.

1. Brown, F. M., "High-Speed Reasoning in Propositional Logic,"
proposal submitted to AP Office of Scientific Research,
July, 1981.

2. Shannon, C. E., "A symbolic analysis of relay and switching
circuits," Trans. AIEE, vol. 57, pp. 713-723, 1938.

3. Bossen, D. C. and S. J. Hong, *Cause-effect analysis for
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I

II1. ORGANIZATION OF THE INFERENTIAL PROCESSOR

We present in this section a brief outline of the organiza-

tion of the proposed inferential processor; see (11 for a more

complete description.

The function of the inferential processor is to accept,

store, and process Boolean or propositional data. It is intended

to function as a high-speed adjunct to a general-purpose compu-

ter, as indicated in Figure 1.

General-Purpose 61Inferential

Fig. 1. Total system.

The applications anticipated for the inferential processor

fall into two main classes: (a) tasks involving only propositi-

onal (Boolean) logic and (b) tasks involving higher-order logic,

primarily the first-order predicate calculus. The first class

includes such applications as computer-aided design of logic-

circuits [2], the design and analysis of databases (see 13],

which is included as Part B of this report), and on-line diagno-

sis of faults in digital systems (4]. In the second class of

applications, unlike the first, the inferential processor does

not do all of the logical work; instead, it provides high-speed

subroutines for use by the general-purpose computer. The employ-

ment of the inferential processor in the latter class of applica-

13



tions is based on the fact that higher-order logics employ propo-

sitional logic as their basic marithmetic.0 Most applications of

this class come under the heading of artificial intelligence,

many branches of which depend heavily on the first-order predi-

cate calculus.

PTInc±2n± ewmu nea

The major components of the inferential processor are shown

in Figure 2.

terms M ,interm 1~Processor

input terms terms

Processor

output terms os

Fig. 2. Major components of the inferential processor.

The unit labelled TERM is a register that holds the term

(Boolean product) currently under consideration. The Minterm Pro-

cessor accepts terms from TERM, building from them a Boolean

function F(Xl,...,xn) using AND, OR, NOT, EOR, etc. The function

F is represented in the Minterm Processor by its minterm canoni-

cal form. The Term Processor accepts the minterms of F from the

Term Processor and generates the Blake canonical form, i.e., the

disjunction of the prime implicants, of F. The Term Processor

14



carries out the fundamental operations of logical analysis (elim-

ination of variables, solution of equations, etc.) which,

arranged in programmed sequences, carry out the processing re-

quested by the general-purpose computer.

klninz ftame 21 Qmntlon

The operation of the inferential processor takes place in

three major phases: reduction, development, and analysis. The

reduction-phase, carried out in the Minterm Processor, reduces a

system of logical equations to a single equation having the form

F = 0. The development-phase, carried out in the Term Processor,

generates a representation of P in Blake canonical form. The an-

alysis-phase, carried out in both processors, executes the se-

quence of inferential operations requested by the general-purpose

computer.

1. Brown, F. M., "Inferential Processor," Final Report, AFOSR/
SCEEE Summer Faculty Research Program, August, 1980.

2. Svoboda, A. and D. E. White, ftdn1d L2.i~i zi f.in
Technl~nn. N.Y.: Garland STPM Press, 1979.

3. Taylor, D. K., "Analyzing Relational Databases using Proposi-
tional Logic,' M.S. Thesis, Department of Electrical Engineer-
ing, University of Kentucky, December, 1981.

4. Brown, F. M. and H. H. Yeh, 'Boolean Equations and Logical
Diagnosis," submitted to IEEE Transactions on Computers.
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IV. MECHANIZED INFERENCE IN BOOLEAN SYSTEMS

The task of the proposed inferential processor is to accept logical

data in the form of a Boolean system and to generate useful inferences (con-

clusions) from such a system. We have attempted in this project to develop a

systematic formulation of (a) the properties of Boolean systems and (b) the

principal operations on such systems that are of use in logical inference. We

discuss that formulation in this section.

Review of Elementary Properties

The equivalences

a<b -0 ab=0 (1)

a =b -4 a4b = 0 (2)

[a = 0 and b = 0O a + b = 0 (3)

[a 1 and b = 1] ab I (=)

are valid for arbitrary elements a and b in a Boolean algebra. Equivalences

(3) and (4) have obvious extensions to more than three variables; thus

[a =0 and b =0 and c =07 is equivalent to [a + b + c = 0], etc.

Boolean Systems

An n-variable Boolean system on a Boolean algebra B is a collection

gl(X) hl(-E)

gk(_) = hk(x) (5)

gk~l (X  .k l(-3)

gm(x) 4hm(_3)

of simultaneously-asserted equations and inclusions in which the g's and h'E

are n-variable Boolean functions on B and x denotes the vector (xI, ... ,Xn).
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The number, k, of equations may be zero in a system, as may the number, m, of

inclusions; we require, of course, that there be at least one equation or one

inclusion in a Boolean system.

Solutions. An element b of Bn is a solution of the system (5) if each

of the statements in (5) becomes an identity under the substitution x-b. A

Boolean system is said to be consistent if it has at least one solution; other-

wise, it is said to be inconsistent.

Implication and equivalence. Let S1 and S2 be two n-variable Boolean

systems on B. We say that S1 implies S2 , written SI S2, in case the state-

ment

(Vb E Bn) [b is a solution of S, b is a solution of S21

is true. Note that S1 Implies any n-variable Boolean system if S1 is inconsis-

tent. We say that two Boolean systems S and S2 are equivalent, written

S 1 . S2 , if each implies the other, i.e., if each has the same set of solu-

tions. Any two inconsistent systems, in particular, are equivalent.

Reduction

By (1) and (2), the system (5) is equivalent to the system

gl(_X) hl(X) 0

9k( @ k(x) - 0

gk l(_3) ;k+l(_) = 0

(Z} hm(X) = 0

17



System (6) is equivalent, by (3), to the single equation

f(l) = 0, (7)

where f is a Boolean function defined by

f I (gM h-) + g h i

By similar reasoning, invoking (4) instead of (3), we deduce that the

system (5) is equivalent to the single equation

F~x) = 1 , '.9)

where F is a Boolean function defined by

F T ( hihi) " (gi + hi) (10)

Any Boolean system can therefore be "boiled down" to a single equation

of the form (7) or of the form (9). We will focus principally on the form (7).

Example 1. The system

ax= b + y

ab ax +

is equivalent to the system

a~x + ab + ay + bx + iy = 0

ab(iy + xy) = 0

which is equivalent, in turn, to the single equation

abxy + ab + ay + bx + xy + abxy = 0.

18



Example 2. The behavior of an AND-gate,

U

is described by the three equivalent statements

UV = W (ii)

jW + w+ UV 0 (12)

V+R +uvwl . (13)

Boolean Relations

Given a Boolean algebra B and a vector x = (xI ,.... x), a relation

(or constraint) on x is a statement that confines x to lie within a subset of

Bn. The operation of the AND-gate of Example 2, for instance, is specified by

the relation

(u,v,w) 6 C(o,oo),(0,l,o),(l,o,o),(l,l,l)I , (14)

where B = (0,I} and x = (U,V,W). (Strictly speaking, the relation is the sub-

set ((0,0,0),(0,1,0),(1,0,0),(1,1,1) itself; it is convenient for our present

purposes, however, to call the statement (14) a relation.)

Two relation-statements on x = (Xl,...,xn) will be called equivalent

if they confine x to the same subset of B . Thus statement (14) above is equi-

valent to equation (11), as well as to equations (12) and (13).

An identity on x = (xl,...,x n) is a relation equivalent to the state-

ment

nx 6 Bn

An identity, in other words, is a relation on x that doesn't really "confine"

x at all. The relations 1x2 f x2 and x1 + x2 = X, + XRx2 , for example, are

both identities on (xlx 2).

19
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A relation on x = (xil,...,xn) will be called a Boolean relation if it

is equivalent to a Boolean equation, i.e., if it is equivalent to a statement

of the form

f(_x) =-0,

n
where f: B -b*B is a Boolean function. If B = (0,1}, then every relation on

x is a Boolean relation. If B is a Boolean algebra larger than (0,1, then not

all relations are Boolean. Suppose B =(0,1,a,al. Then the relation

(Xlx 2 ) C ((0,0), (a,0), (15)

is a Boolean relation because it is equivalent to the oolean equation

ax + x =0 . (16)

The set ((0,0), (a,O)j of solutions of (16), that is, is precisely the set

defining the relation (15). The relation

(XlX ) 4E Uo,o), (a,l)}, (17)

on the other hand, is not a Boolean relation. It is not equivalent, that is,

to a Boolean equation; any Boolean equation f(xlpx 2) =0 on E =(o,!,a,aj havin6

solutions (0,0) and (a,l) must also have solutions (O,a) and (a,a)--a - . sha-.

be able to show after we discuss the solution of Boolean equations.

Eliminants

Let f: Bn -bB be a Boolean function expressed in terms of arguments

We derive from f a set (CTf I T . (xl,...,xn1} of Boolean func-

tions by applying the following rulesa

(i) COf = f

CC~xf = f(OX2, ... ,Xn), e.f(l,x 2 .. x Xn)

(ii) CUS f = (Csf )

20
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We derive another set, (D T T Cxl,...,x n3 of Boolean functions by

applying the rules

Wi Df =f

D(XIf = f(0,x2 ,...,x n) + f(l,x 2,...,xn)

(ui) DRUSf - DR(Ds f)

We call CT f the conjunctive eliminant, and D f the disjunctive elimi-

nant, of f with respect to the subset T of (Xl, ...,xn1. Note that if x is a

single letter, then the conjunctive and disjunctive elimirnants of f with re-

spect to x are related to the discriminants f- and f (discussed in Chapter ')
x x

as follows:

Cx f = f -of (18a)

D~xl : = fxt I fx  ' (ib)

It is convenient to omit set-braces in specifying eliminants; thus we

write Cxlx3f rather than C xlx3f.

Suppose the subset T comprises k elements (k % n) of (x",... ' (we

assume without loss of generality that T comprises the first k elements, i.e.,

that T = Cx,,...,xk]). Then CTf and Drf are determined as follows:

Cf= i f(b x k+ l i"iXn)
T b 6(0, 1 'k

D T f = lkf(bx k +l, ' ,x n)
bG(0,l

If k=2 and n =4, for example, then

C f(wxyz) - f(OOy,z) f(O,l,y,z) • f(l,0,y,z) . f(llyz)

and

Dwxf(w,x,y,z) = f(0,C',y,z) +f(O,l,y,z) +f(l,0,y,z) +f(l,l,y,z).
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It is clear that the conjunctive and disjunctive eliminants of a Boolean

function f with respect to a subset T of the argument-set may be expressed by

formulas not involving any of the arguments in T. The process of calculating

such formulas may in some cases be greatly simplified by application of the

two theorems which follow.

Theorem 1. Let f3 Bn--, B be a Boolean function expressed in terms of

arguments x,... ,x. Then

BCF(, C f) Z (terms of BCF(f) not involving xl or X1 ).

Proof. The literals Xl and xI may be factored from the terms of in

Pro:Teltrasxadxo BCF(f) i

which they appear, in such a way that f is expressed as

L Aft

f= 7ilpi(x2... ,x n ) + 7xq(x 2 ,...,x n ) + rkJx2, Xn)

where pl'''" pLql... ' ' ' r l ' ' ' ' , q N are terms (products) not involving the

argument x . Thus C f = f(O,x?,...,x )f(l,x2 ,...,x n ) may be expressed as
L A 1 n

[7,,p, + I J IlI qjj + Yrk l Z pq. + £r.. Every consensus formed by
!at MSi jI aoo i ZI jai #COO

terms of BCF(f) is absorbed by a term of BCF(f). In particular, every consen-
L M M

sus of the form piqj is absorbed by one of the r-terms; thus 1pl q  . 7 r
M), Ji ' irk

and we conclude that C xf 1= I r k . Thus C x f may be expressed as the portion

of BCF(f) that remains after every term involving x1 or x1 is deleted. It is

shown in Chapter 4 that the result of such deletion is in Blake canonical

form 3

Corollary 1.1. Let f: B n--..B be a Boolean function expressed in terms

of arguments x1 ,...,xn and let T be a subset of (Xl,... n . Then

BCF(CTf) : (terms of BCF(f) not involving arguments in T). (19)
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Proof: By Theorem 1, (19) is valid if #T =1, i.e., if T is a singleton-set.

Suppose (19) to be valid if #T=k, and consider the case #T=k+l, i.e., let

T = (xi V R, where #R =k and x I R. Then BCF(CT f)= BCF(C(xl ( % f))

(terms of BCF(CR f) not involving x. or x) = Z(terms of 7,(terms of BCF(f)

not involving arguments in R) not involving x1 or x ). Thus (19) is valid for

T =x13UR M

Example .' The system

w+x =y

x + = Wz

is equivalent to the single equation

xy + wxy + iz + WY + yz + wx + xz =0

whose left side, f, is expressed in Blake canonical form. The conjunctive

eliminants expressed below are constricted by inspection of BCF(f), using

Theorem 1 and its corollary.

C xf = w; + i + ji Cwx f -- C w(C xf) --=

C f= X + H +xiC 'f =C (Cf) =ix wMx w

Theorem 2. Let f: B--. B be a Boolean function expressed in terms of

arguments xl,...,xn. Then D xf is obtained from any SOP formula for f by re-

placing Xl and xl, wherever they appear in the formula, by 1.

Proof By definition, D xf(x lx 2 ,...,x) = f(O,x2 ,...,Xn) + f(lx 2 ,...,xn)

An SOP formula for f may be expanded in the form

f(xx 2 ,...,x n ) = ' 1P(x 2 ,...,x) + xlq(x2 ,...,x n) + r(x 2 ,...,xn),

where p, q, and r are SOP formulas not involving Xll hence, f(O,x 2 ,...,xn) =

p(x2 ,...xn) + r(x2,...,xn) and f(l,x 2,...,xn) .q(x2,...,xn) + r(x 2,...,xn).
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We deduce, therefore, that

Dxf(xVx 2 ,...'x n ) = p(x 2 , ... , ,xn) + q(x2 ,...,x n) + r(x2,..Xn).

Thus D xf is produced by replacing the literals x1 and x by 1 in the original

SOP formula for f

We refer to the foregoing procedure, which was given first apparently

by Mitchell [31 , as the "replace-by-i trick."

Example 4. Let f(w,x,y,z) be given by

= yz + WXYZ + Wyz

Then

Dx f  yz + yz + yz =y + zwx

D f + i+ x+w =1yz

Example 5. The following (correct) calculations illustrate potential

pitfalls in applying the replace-by-i trick:

(a) Du( + vw) -- + vw--

(b) Du(T +-v) = u(N) =

(c) Du(u+v)(u+w) = Du(UW + v + vw) = W + v

Calculation (a) illustrates that D f is not found simply by deleting u and u

(which would produce vw rather than 1 in this case ), but by replacing a and u

by i. Calculations (b) and (c) illustrate the necessity that f be expressed in

sum-of-products form before the literals u and u are replaced by 1. If the re-

placements are made in the original formulas, then the erroneous results would

be D ( -7+) = (1 +-v- - 0 for (b) and D (u+v)(u+w) = (l+v)(l+v) - 1 for

S().
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Elimination

A Boolean relation constrains the vector x = (xl,....,X n) to lie within

a subset of Bn. It also constrains any k-element subvector of x (1 * k * n) to

klie within a subset of B . The Boolean relation (14) describirg an AND-gate,

for example, constrains (U,V,W) to lie within the subset C(0,0,0), (0,1,0),

(1,0,0), (1,1,1)j of the 8-element set (0,113 . Suppose we wish to find the im-

plied relation on the subvector (U,W). To do so, we simply delete the middle

element of each triple in (14), and keep the set of pairs that remains. The

resulting relation on (Uw) is

(u,w) E C(o,o), (1,0), (ll)}. (20)

We say in this case that V has been eliminated from the relation (14)

to produce the relation (20), and we call (20) the resultant of elimination of

V from (14). Relation (20), it should be emphasized, limits (U,W) to the same

subset of [0,112 as does the original relation (14).

If R is a Boolean relation, i.e., one equivalent to a Boolean equation

f(xl,x= 0, (21)

then the resultant of elimination of any argument from R is also a Boolean re-

lation. Thus, the resultant of elimination of x from the equation (21) may be

expressed by an equation of the form

g(x2'.'IXn) 0. (22)
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To determine the resultant (22) from equation (21), we may proceed by (i) ex-

pressing (21) as an equivalent explicit subset of Bn , (ii) deleting the first

element of each n-tuple in the subset, and (iii) expressing the resulting sub-

set of B' as an equation of the form (22). The following result enables us,

however, to generate (22) directly from (21).

Theorem a. The equation g(x 2 ,... ,X) =0 expresses the resultant of

elimination of x from the equation f(x 1 ,x2 ,... ,x) =0 if and only if the

identity

g=C f (23)
x1

is fulfilled.

Proof: The fundsamental theorem of Boolean algebra, together with properties

(1) through (3), gives rise to the following chain of equivalences:

f(x1,x2,...,x n 0

RIf(ox 2 ... ,x n) + x1 f(,x 2 ,... ,x) =0

i 1 f(0,x2 ,... ,Xn) = 0

xlf(l,x2, .,xn) = 0

{ f(O,x, x ) .C x1
x I  X, (~ 2 9... ,Ox .

f(O 2  ,x x$ x f(lx 2 ,...,x n ) (24)

The constraint imposed by (10) on the subvector (x 2 ,...,Xn) is

~ NlX 2 "xn) i
f(O,x, . , n  (lx2,...,x
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which may be re-expressed as

f(O,x 2 ,...xn) f(1,x 2 ,...,Xn) = 0.

Thus g = 0 is the resultant of elimination of xI from f = 0 if and only if the

condition (23) is satisfied

Corollary 3.1. The equation G(x2 ...,X )=1 expresses the resultant of

elimination of xI from the equation F(xl,X2 ... xn) =1 if and only if the

identity

G D F (25)x1

is fulfilled.

Example 6. The AND-gate discussed in Example 2 is characterized by either

of the equations f(U,V,W) = 0 or F(U,V,W) = 1, where the functions f and F

are defined by

f = u"W + 7W + Uvt (26)'

F = UW +r + UVW

Applying Theorem 1 and its corollary, the resultant of elimination of V Is ex-

pressed by either of the equations g(U,W) =0 or 3(U,W) =1, where

g=C vf f(U',oW) • f(UlW)

( + w) • (Ow +u2)

C D F(U,O,W) + F(U,l.W)

- (O9+ ) +(R+uw)

.27
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The resultant is expressed, therefore, either by UW = 0 or by U+W = 1; either

of these equations, or the equivalent inclusion W * U, is equivalent to the

relation (20). These relations express all that is known concerning U and W,

in the absence of knowledge concerning V.

If we eliminate W from (12), the resultant is (UV)(U + V) = 0, i.e.,

0=0. The latter relation on (U,V) is an identity; it allows (U,V) to be cho-

sen freely, that is, from _0,132--which confirms our expectation that the

inputs to an AND-gate should be unconstrained in value if nothing is known

concerning the value of the output.

The Extended Verification Theorem

We discuss in this section a result, due to Lbwenheim [21 and Mller

[4], which enables an implication between two Boolean equations to be trans-

lated into an equivalent Boolean inclusion. The presentation in this section

is adapted from that of Rudeanu [6].

Let s be a single element of B and let v (Vlv 2 ,... ,v) be a vector

non B, i.e., s 4 B and e Bn . Then s v and vs are defined by

sv = vs = (Svlsv 2 ,..., sv)

Lemma 1. Let f: Bn B be a Boolean function and let b be an element

of B such that f(b) = 0. Then

f(b f(x) +xx =0 Vx.Bn . (27)

Proof: By the fundamental theorem of Boolean Algebra,

f(bf(x) + x?(x)) = 1(x) f(x) + f(x) f(b)

Each term on the right-hand side o: the foregoing equation has the value zero,

for any.3 B n , proving (27).

28



I
Theorem 4 (Extended Verification Theorem). Let f: B' B and g: Bn- B

be Boolean functions, and assume that the equation f(x) = 0 is consistent. Then

the following statements are equivalent:

(i) (V _• Bn ) Ef(x) - =0 g(x) = 0]

(ii) (x e Bn) [(,) f(x)]

Proof:

(i) .(U): Let b GB n be a solution of f(x) =0, i.e., let f(b) =0.

Then g(b) =0. For any x e Bn, f(xf(x) + bf(x)) = 0 by Lemma 1; hence,

g(x?(x) + bf(x)) = 0. Thus, for all x _B', ?(x) g(l) + f(x) g(b)=

?(x) S(x) 0 0, i.e., g(x) 4 f(x), proving (i).

(Ul) =* (iii): Trivial.

(iii) (i): The functions f and g are Boolean; hence, they may be

written in minterm canonical form, i.e., f(x) = Z m i(x) and g(x) gimi(-x)

for all x a B n. Assume (iMi), i.e., assume that g,% fi (I =0 1  ... 2 n'-l), and
-- I -

let b 4 Bz be a solution of f(x) =0. Then 7 fi Mib) = 0, whi.ch implies that
Lzo

fImi(b) = 0, and therefore that g imi(b) O,(i=O.l,...,2nl). Thus g(b)=0,

proving (i). *

Corollary 4.1. Let f: Bn -- B and g: Bn -- B be Boolean functions and

assume that the equation f(x) = 0 is consistent. Then the following statements

are equivalent:

i) (V *0 Bn) Ef(x) o p g(_x) =0]

(ii) ( B_ n) Cf(x) = g(x)]

(Iii) (VX COlln) Cf(_x) = g(1)]

Proof: Immediate from Theorem 3 and the definition of equivalent systems.
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Poretsky's Law of Forms

It is useful on some occasions to re-express the information supplied

by the Boolean equation f(x) =0 in the equivalent form g(x) = h(x), where g is

any given Boolean function. The associated Boolean function h is specified by

the folluwing theorem.

Theorem (Poretsky's Law of Forms). Let f,g,h: Bn -* B be Boolean

functions and suppose the equation f(x) = 0 to be consistent. Then the equiva-

lence

f(_) 0 = g(x) h(x) (28)

holds for all x 6 Bn if and only if

h = f®g . (29)

Proof: Suppose (28) to hold for all x in Bn. Then (28) is equivalent, by

property (2) and Corollary 3.1, to the equation f(x) = g(x)$ h(x) (VxE Bn).

Thus g(x) f(x) = g(x)* (g(x) a h(x)) = h(x) (Yx - B n), from which we de-

duce (29) directly. Suppose on the other hand that the function h is defined

by (29). Let b i Bn be one of the solutions of the consistent equation f(x) =C.

Then h(b) = f(b) g(b) =0 o(j) = g(b), i.e., b is also a solution of

g(x) = h(x) (and we deduce that g(x) = h(x) is consistent). Thus f(x) = 0

g(x) = h(x). To show that g(x) = h(x) m f(x) = 0, let c GB n be any solution

of g(x) = h(x). Then g(c)Qh(c) = 0, whence g(c)*(f(c)Qg(c)) = 0 by (29),

from which we deduce that f(c) = 0, proving (28). U

Example ?. Suppose a Boolean function h is sought having the property

that the equation x X2 + x3 = 0 is equivalent to x2x3 = h. The first equation

is consistent (a solution, for example, is X1 =0, x2 =0. x3 =0); hence, h is
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determined uniquely by (29), i.e.,

h = (xl'2 + x3) (x2x3)

=X 2(xl + x3 ) "
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V. FUNCTIONAL DEDUCTION

An important potential application of the inferential processor is that

of generating functional consequences, i.e., conclusions of the form

X_ = f(x2 ,...,xn), (30)

from a given system of logical equations on the variables xlx 2 ,. .. x n . If such

consequences exist, then we call xI functionally deducible from the given

equations and we say that rx2, ... is a determinirg subset for x1 . aenerat-

Ing functional consequences from a given system of equations is the inverse of

solving the system; if (30) is a solution of a system, then the system is a

consequence of (30). The problem of solving logical equations was given pri-

mary attention in Boole's original work, and has since been studied inten-

sively; there has been no progress to our knowledge, however, on the problem

of generating functional consequences.

Some very preliminary work on functional deduction was reported in [17;

we outline in this section the progress we have made in the meantime. A test

(Theorem 6) is given to determine, for a given logical database, the function-

ally deducible variables; this test is well-suited fcr high-speed execution by

the inferential processor, inasmuch as it is based on the basic units of data

(prime implicants) stored in the processor. Given that a variable is function-

ally deducible, the set of functions f for which C30) is a functional conse-

quence is specified by Corollary 6.1. A necessary and sufficient condition for

a subset of (x 2 ,... ,xn to be an x 1 -determning subset is given in Theorem 7,

and an algorithm is given to generate the class of minimal x -determining sub-

sets. Finally, the theory of functional deduction is applied to the problem of

designing economical multiple-output ccmbinational circuits.
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The discussion in this section is based on the concepts and terminology

introduced in Section II.

Functional Deducibility

Let us suppose a collection of Boolean, i.e., propositional, data to be

reduced by the inferential processor to the single equation

O(x=,x2,.... P l . (31)

We say that x is functionally deducible from (31) in case there is a Boolean

function f:B n-l--B such that equation (30) is a consequence of (31). We call

(30) a functional consequence of (31).

Theorem 6. The following statements are equivalent:

(i) x1 is functionally deducible from g(xl,...,x) = .

(1i) D x ".

(iii) cx $ = 0.

(iv) x1 or appears in every term of BCF(X).

Proof:

(i>= (i>'(ii) : The equivalence of the following statements follows di-

rectly from the results of Section II. In particular, the equivalence

of (a) and (b) follows from the extended verification theorem (Theorem

4) and property (2).

(a) (3f) [A(Xl,..,X n ) -i==1 = Xl f (x 2 , .. .,x n)

(b) ( 3f) [o(Xl,X 2,... ) .x leD f(x2,..
(C) (,f) O(0,x? .. ) ? (x .,....

2(1,x) . f(x2, ...
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1°~(d 3- ~,4f 70 ........... ......... ......

(e) (3)[(1,X 2. 7(, " )]

(g)D 12

not involve x, or-x. Thus C $=0 if and only if x, or x, appears in
x

every term of BCF(O).

Corollary 6.1. Let f. B ---p- B be a Boolean function. Then the equa-

tion x1 =f(X 2 ... x .) is a functional consequence of O(x1 ...,xn =1 if and

only if the functions f and V satisfy the condition

not '. l * 7 T 1 (32)

Minimal Determining Subsets

Let fBu-,VWB be a partition of fxuc...ixo, where V ei v...tv 1 and

W = (w1 ,... We say that V is a u-determining subse of (x ... ,xn 1, and

that W Is u-eliminable, if u is deducible from the equation

DO = f "  "(33)

Theorem 2 Let u),VW1 be a partition, as described above, of the set

Xl,...,x n1. Then V is a u-determining subset if and only if the condition

DW(Iu) DW(Oa) = 0 (34)

is satisfied, in which case a functional consequence is u f(v), where f is
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any Boolean function in the non-empty interval

DW() f D(). (35)

Proof: By Theorem 6, the variable u is deducible from D. =1 if and only if

Cu(DwO) =0, i.e., (DwO)u.(DwV)- = 0. From the identities

:(DWO) u D W(Ou) (36a)
(O)- =DW(O-), (36b)

we conclude that u is deducible from D = 1 if and only if (34) is satisfied,

in which case, by Corollary 6.1, we obtain the equation u=f(v) as a conse-

quence, where (Dw,) C f , (Dwi)-. Tdentities (36a) and (36b) lead therefore

to (35).

Generating minimal determining subsets. The following procedure, based

on Theorem 7, generates a convenient representation of the class of minimal

u-determining subsets.

Step 1. Express $u and as sum-of-products (disjunctive normal) for-

mulas, viz.,

u= P

Step 2. Associate with each pair (plq of terms an alterm s defined

by the summation

sij = (letters that appear opposed in pl and q

Step 3. Construct the product-of-sums formula

_-1TIT
u .2- ij

35



Step 4. Multiply out, to form a sum-of-products formula for au , and de-

lete absorbed terms.

Step 5. With each term xy... z of a associate a minimal u-determiningU

subset Cx,y,...,z1.

Example 8. Let us examine for functional deducibility the data given in

a problem widely quoted by early logicians (Boole F2], Chapter IX):

"Suppose that an analysis of the properties of a particular class of

substances leads to the followirg statements:

(1) Whenever properties A and C are missing, then property E is found,

together with one of the properties B and D, but not both.

(2) Whenever the properties A and D are found while E is missing, then

both B and C will either both be found or both be mlssing.

(3) Whenever property A is found in conjunction with either B or E, or

both of them, then C or D will also be found, but not both of them.

Conversely, whenever C or D (but not both) is found, then A will be

found in conjunction with either B or E or both of them."

The foregoing data are equivalent to the single equation

S=1, (37)

where ' is given in Blake canonical form by

BCF'(g) = XCD +.ABOf + A E + ACDE + ABDE: + AMf. (38)

The variables appearing in every term of BCF( ) are A, C, and D; hence, by

Theorem 6, these are the variables functionally deducible from (37).

Let us consider the functionally deducible variab.e A; in particular,

let us determine the minimal A-determintng subsets of tB,C,D,EJ.
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OA = B6+ DME + C5E + M

S= CD + BNSE

Thus,

aA = (D)(C)(C)(D)(D)(C)(C + D)(B + E)

= CD(B + E)

= BCD + CDE.

The minimal A-determining subsets, therefore, are CB,C,D} and (C,D,E3. To de-

termine f in the functional consequence A =f(B,C,D), we apply (35) in Theorem

7, viz.,

D cE(VA) $ f 5. D(EI(OX)'

Thus,

BCD D + CD + SI $ f C B + CD.

Two simplified functional consequences are derived from the foregoing inter-

val, viz.,

A =C5 + + BC

A =5 + D + Ef.

Similar analysis yields the following functional consequence based on the

A-determining subset V =(C,D,E3:

A = CD* D + D2.

We noted earlier that the variables functionally deducible from (37), in ad-

dition to A, are C and D. The (unique) C-determining and D-determining subsets

are (A,BD,El and (A,C,EJ, respectively; the corresponding functional conse-

quences, in simplified form, are

C= AD + B2 ABE

D = AC + AfE

37
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Circuit Design Based on Functional Deduction

An n-input, k-output combinational circuit is typically specified by a

system of equations of the form

zI 1 fi(xil,...,ox n)

(39)

Zk fk(xl,.,xn)

0 fk(Xl,...,xn)

The latter equation represents any "don't-care" conditions that may exist on

allowable input-combinations.

It was observed as early as 1951 [3] that a system of the form

zI = gl(xl,. .. ,xn)

z 2 =g2(xl,...XnZ l)

z3 = g3(xl,... ,xno Zi, z2) (40)

-- g ( X , ... x n$Z i p,... z k )
Zk k -

may meet the functional specifications of (39) at -educed logical cost. Out-

puts, that is, may be used to assist in the generation of other outputs. The

recursive structure of (40) guarantees that the resulting circuit is free of

closed loops. There are cases, e.g., the end-around carry in a one's-comple-

ment adder, in which closed loops may be employed with good effect in combi-

national design [4,5,6]. Such loops, however, introduce the possibility of os-

cillations and other problems inherent in the design of asynchronous sequen-

tial circuits; we therefore confine our attentior to loop-free specifications

of the form (40). We call the corresponding realizations recursive circuits.

38



The logical cost of a recursive circuit depends on which outputs are

allowed to depend on which other outputs; the sequence (1,2, ... ,k) specified

by (40) is only one of k: possible sequences. No method has hitherto been

known for determining a promising sequence prior to working out the actual

functions corresponding to that sequence. Recursive circuits have consequently

been regarded as difficult to design, even though their potential economy has

been well-recognized; the design of such circuits is stated in C71 to be

"practicable for synthesizing a net which has not more than two or three out-

puts."

Functional deduction provides a way to overcome tne foregoing diffi-

culties, enabling recursive circuits to be designed conveniently. The follow-

ing procedure is based on minimizing the num'ber of arguments upon which the

output-functions depend.

Step 1. Reduce the original specification (39) to a single equation of

the form (xl,...,Xnzl, .. .,zk) = 1.

Step 2. Calculate the z i-determining subsets (i =1,2,...,k).

Step 3. Select a sequence SiI's,2'S of subsets of (xi , ... ,Xn,

Zl,...,ZkI having the following properties:

(a) Sr is a zr-determining subset (r=l,...,k).

(b) Si is a subset of (Xl,...,Xnd;

Si2 is a subset of Xlo,..., Xn, z 1

S1 is a subset of (X,...,x nz i etc.

(C) The subsets S IS I,...,S are as small as possible.

Step . Construct simplified consequences of the form z =

(r, l,...,k), where the arguments of g are those appearing in

S
r

39



Example 9. A multiple-output circuit is specified by the equations

z + bc

z2 =ab +c

z 3=a+b+c.

Let us apply the procedure given on the previous page, with the object of re-

ducing the logical cost of the foregoing specifications.

Step i: Zalc 2 Z3 + iCZlZ2Z3 + abzz2z 3 + abCz Z2z3 + abczl 2 3

Step 2: Calc.lation of z .-determining subsets:

=Z=aczz + aczz + abczz 3
O1 2 3 2 3 2 3

l = abz z + abcz z
i 2 3 2 3

a = (a)(a)(a + z2 )(a + c + z 2 )(b + z2 + z3)(c + z + z3 )

= abc + az 2 + az3 .

Similarly,

az2 = abc + cz1 + acz3

az =abc + az + a2.
3

Step 3: Two subset-sequences are promising:

Sequence # 1 Sequence #2

s a - ,b,cl S3 = fa,b,c3
2 =- [c,zl s, =- a,z.3

3 1 2 3 S2  '1s3 -- C,. or ,= - ,}

40O



Step 4: Simplified functional consequences:

Sequence #1 Seguence #2

z, +bc z a+b +c
1 3

2 23

Either of the foregoing realizations is more economical than

a direct realization of the original specifications. Each

requires a single IC package, sequence #1 a quad 2-input

NAND and sequence #2 a triple 3-input NAND.

Example 10. The input-logic for a clocked D-latch is defined by the

equations

U = C +9 (41a)

v = + D, (1b)

where U and V are excitation-signals for a NAND-latch, C is a clock-input, and

D is a data-input. A circuit implementing (41a) requires a single NANDf-gate;

however, (41b) requires an inverter in addition to a NAND-gate. To simplify

(41b), we resort to functional deduction. The system (41) is equivalent to the

single equation $ =l, where

BCF( ) = dUV + Cff + CD7V. (42)

We deduce from (42) that C, U, and V are functionally deducible from g = 1.

The corresponding determining subsets are represented by the functions ac , aU,

and aV 1

a =-UV

au = M + CV

= = CD + CU.

I41



The function a v implies that [C,UJ is a V-determining subset. The cor-

responding functional consequence is specified by (35) as follows:

DD(0,v )  V1DD(C )

i.e.,
"u + CU *. V % 0+ U.

A simplified functional consequence specifying V, therefore, is

V --' +U.

A circuit implementing the latter relation requires only a single NAND-gate.

Example 11. Let us suppose that we are to design an asynchronous se-

quential circuit having inputs a, and a and output z. The output is to have

the value 1 if and only if the present value of the binary number ala0 is

greater than the preceding value. We assume that the signals a and a0 cannot

change simultaneously.

By standard processes of asynchronous-circuit design we arrive at the

specification

y = maj(a ,a.,Y)

t -tz = maj,a 0,aol),

where y is an Internal state-variable and where the "majority function maj is

defined by maj(x,yz) =xy + xz + yz. The foregoing specifications are best im-

plemented by full adders (FA's), which generate mr iority-functions at their

carry-outputs; the resulling circuit is shown in Figure 1.

The circuit of Figure 1 requires two packages, a dual full adder and a

hex inverter. Only one-sixth of the Inverter-package is employed, however, and

the upper full adder provides a sum-output,

s = a,4 a 0 * y,

42
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Fig. 1. Asynchronous ci-rcuit--original design.

which is not employed at all. These observations lead us to apply functional

deduction to the expanded system

* y = maj(a 1 ,a0 ,y)

z= maj(a.a 0,j)

s = ale a0 M Y.

The foregoing specifications are equivalent to the single equation =1l, where

= alaoiyz + (ilao + ali 0 )(siz + iyi) + a,1aosyz.

Thus

Oz= ia aos + a 1 i0 sj + a 1a0sy

$- = iasyj+asy + aliay,

whence

a, =(a + s'(s + )(a+ &. + a+ y)(a +s)(al + ao+s3+')

(s + y)(a 1 + .eao + s + y)(a + s)(a0 + a),

4)



A result (surprising to this investigator) of the function a is that one of

the z-determining subsets is ls). The corresponding z-consequence is specified

by the interval

D(allaoty (($z) a

i.e.,

Thus, z is given by

Z =s.

The corresponding circuit, shown in Figure 2, requires only one-half of a dual

full-adder package.

:I, ° I

Fig. 2. Asynchronous circuit--modified design.
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FOREWORD

Database-processing is an important potential application of

the proposed inferential processor. We show in this study that

propositional deduction may be used to determine the functional

dependencies in a relational database, from which (as is well-

known) the keys for the database may be determined. In

particular, we have developed and programmed a two-part algo-

rithm: the first part generates the functional dependencies of

the relation; the second part uses these dependencies, together

with rules for propositional inference, to generate the keys of

the relation. The algorithm is programmed in the logical language

PROLOG.

I!
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CHAPTER I

INTRODUCTION

A major problem in the design and use of

computers is that of storing, retrieving, and updating

large quantities of non-numerical data. This problem

is usually managed by storing these data in a

database. Several types of databases exist; however,

the relational database has the simplest and most

regular structure. This structure makes the

relational database attractive for use in large, high-

speed data retrieval systems employing associative

memories and parallel processors.

The relational model is based on the idea that a

database containing information about a particular

object (e.g., a university class-schedule) can be

viewed as a relation on a set of attributes; the

attributes for a class-schedule would be the course

number, the room number, the professor's name, and so

on. The data of the relational database are stored in

a simple tabular form, one row for each record, and

one column for each attribute.

The data in each row of the table are accessed by

using a key of the database. A key in a relational

database is a subset of its attributes which OunlocksO
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the database: if the value of each attribute in a key

is specified, a unique row of the table can be

* specified. The keys of a relational database are

sometimes very difficult to locate; however,

examination of the functional dependencies inherent in

a database will generate the desired keys.

The functional dependencies of a database have

many uses in modern database theory. However, no

clearly defined generation method for these

dependencies has been developed. Using the recently

proven fact that propositional (Boolean) logic can be

used to characterize the functional dependencies

inherent in a relational database, an algorithmic

procedure to generate these dependencies will be

derived. By applying Boolean analysis to these

dependencies, an algorithm will be developed to

determine the keys of relational database. The two

preceding algorithms wil-. be joined together to form

the PD-Key algorithm. The FD-Key algorithm has the

capability to generate the functional dependencies of

a relational database; using these dependencies, the

keys of the database may be located. To demonstrate

the feasibility of the FD-Key algorithm, the logic

programming language, PROLOG, will be used to generate

the functional dependencies and keys of a given
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relational database.

In Chapter II, the basic concepts of relational

databases are discussed, emphasizing the terms,

components, and properties of such databases. Also,

some associated problems of utilizing relational

databases are explored.

Chapter III presents some fundamental rules and

properties of propositional logic and Boolean

analysis. Also, the equivalence of propositional

logic and relational databases is discussed. An

algorithm to generate the keys of a database from its

functional dependencies is developed. This algorithm

is later used as one of the main components of the FD-

Key algorithm.

In Chapter IV, the algorithm to generate the

functional dependencies from a relational database is

developed. As an example, the functional dependencies

and keys for a.given relation are derived.

Chapter V discusses the basic concepts of the

logic programming language PROLOG. Using these

concepts, Chapter VI presents the syntax rules and

system requirements for correct implementation of the

FD-Key algorithm developed in Chapters III and IM

Suggestions for future work involving the FD-Key

I
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algorithm are presented in Chapter VII. Chapter VIII

contains a brief summary of the work and conclusions

presented in this thesis. The flowcharts of the FD-

Key algorithm presented in this thesis are contained

in Appendix A. Appendix B is made up of the actual

PROLOG software used to execute the FD-Key algorithms.

Finally, Appendix C contains executions of the FD-Key

algorithm in PROLOG for several sample relations.

h.

*1



,.71

CHAPTER II

INTRODUCTION TO DATABASES

flatabaxz Mdel
A typical database is organized into three

different parts: a collection of interrelated data,

the hardware necessary to store the data, and the

software required to use the data in a real-world

application. The database must accurately represent

some undertaking in the real world, and it must be at

the user's disposal. The currently available hardware

imposes a structure upon the data. This structure is

called a schema, and it defines the data model used in

creating the database. Each model is given a name

which represents the way data are viewed by the users.

The three currently used structures are the network,

hierarchy, and relational models. The database

systems that are curently in existence were proposed

and studied in many different reports by several

authors [1r2,3,4,S,9,12,14,15,17,18,19,21,231.

The network model was first proposed by the

Committee on Data System Language, (CODASYL). This

model consists of various blocks of data organized in

a network. The access time for some blocks of data is

very fast, but the user must set up the structure of

5
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the system, which cannot be altered once the data

have been stored.

The second data structure is the hierarchical data

model. Here, data blocks with similar characteristics

are accessed by a common data path. Hence, access

time between data blocks with similar information is

very small, but access time between blocks with very

dissimilar data can be very large.

The third data structure is the relational model

developed by E. F. Codd (10]. In a relational

database, the data are normalized into a form where

the relationships among data items appear in a two-

dimensional tabular form. Most users have very little

trouble in understanding this data model since the

two-dimensional table is a familiar method of

conveying information. This thesis will use the

relational data model exclusively.

The previous discussion presented some general

concepts of data models, but to fully understand

relational databases, the accepted conventions,

properties, and formal definitions of a relational

database must be explained. Henceforth, the use of the

word "database" will refer to a relational database.
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In a database, the two-dimensional table is called

a r. i-at-ig. The columns of the relation are labeled

with unique names called a±Zxittrbu, and the rows are

called tuRj=z. The data values in the relation are

chosen from several sets of values called dmins.

Each attribute has a domain and several attributes may

share the same domain. For example, if a relation has

two attributes, say part number and serial number, the

attributes are different, but their domains could be

the same set of numbers. A more formal definition of

a relation is now given, since some of the basic

terminology has been discussed.

,ZLIj; j2. Given a set of domains D1 , D2 ,..., and

Dn , R is a relation on these n sets if it is a

collection of n-tuples, <dld 2 ,...,dn>, such that d1

is an element of Dl,...,and dn is an element of Dn.

The usual method of representing attributes in a

relation is to allow letters near the beginning of the

alphabet to stand for individual attributes, and

letters near the end of the alphabet to stand for

sets of attributes. For example, C could represent

the attribute COURSE in Fig. 1, and X could represent

the set of attributes (NAME, COURSE, TIME, ROOM

NUMBER}. The union of two sets of attributes, X and

Y, is denoted by the concatenation XY, and ABC

I

I .
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represents the set of attributes {A,BC}. The relation

R on the set of Attributes X in Fig. 1 is written as

R(X). If X is broken into two sets, Y-{COURSE, TIME}

and Z-{NAME, ROOM NUMBER) where X-YZ, then R(X) is the

same as R(YZ).

NAME J COURSE TIME ROOM NUMBER
S---------- -------- -------------

I Green IPsychology I 8:00 1 112
I Green IPsychology 1 10:00 1 112
Stewart IChemistry 1 2:00 1 106
Stewart lChemistry 1 8:00 1 104
I Jones IMathematicsl 12:00 1 210
I Smith IPsychology 1 9:00 1 104
IJohnson IPhysics I 9:00 1 210
I ------------- --------------- I

Fig. 1. Relation R(X).

fLbj= de endencleSo In a database, several

relationships exist among the attributes. One of the

main relationships is that of functional dependency

(PD). Before dependencies can be discussed, the

representation of a data value in a tuple must be

explained. Let r be a tuple in the relation R(X) on

the set of attributes X, where the set of attributes Y

is contained in X. The tuple of values of r for the

set of attributes Y is denoted by r[Y].

D!±I1i. Given a relation R, two sets of

attributes X and Y, the ft na± da~mnnene zL, X -> Y,

holds in R, (or relation R satisfies X -> t), if and

.1d d
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only if for any two tuples v and w in R, v[XI = w[X]

implies v[Y] = w[Y].

fIN.i12-18. A dependency s is a rnseg nn of a

set of dependencies S if for all relations R, s holds

in R if all the dependencies of S hold in R.

Functional dependencies are used extensively in

designing relations that are free from data storage

and retrieval errors. These errors are called

in=i7nna, d]fiti2n, and rnieijng InZam-iu-. The

insertion anomaly is the use of undefined or null

values in the table of a relation. The removal of a

part of a tuple, causing the loss of other

information, is called a deletion anomaly. The

rewriting anomaly can easily be explained by the

following example. Suppose the functional dependency

A->B holds in the relation R(X), and there exist

tuples t I = <al,blcl> and t 2 - <al,bl,c 2 > in R(X).

Then if t I is changed to <al,b 2 ,cl>, the tuple t 2 must

rewritten as <al,b 2 ,c 2 >. If t 2 is not changed, an

anomaly will exist in the relation since the

dependency A->B will no longer hold.

VntWU t kzjz. A zz1flon ZcIm& is a

description of a single relation consisting of the

relation name, a set of attributes, and a set of

Lk
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dependencies. The stae (instance or extension) of a

relation schema is simply a table of data that

conforms to the set of dependencies and uses the

attributes contained in the relation schema. A

datatan schema, D, is the set of relation schemata in

the database. The state of a database, D, is a mapping

of relation states to the schemata of D.

The concept of a set of key attributes (or simply

a key) existing in a database is vital to the

retrieval of information stored in a database. Once a

key has been located, any other information stored in

the database can be accessed.

* Di. t. A subset Y of X is a key for R(X) if

and only if Y->X and there is no proper subset Z of Y

such that Z->X.

In other words, a key of a relational database is

a subset of its attributes that "unlocks" the

information stored in the database: if the data values

for a key are specified, a unique row of the table is

identified.

A notion of a =L=./y. is closely related to the

notion of key. A sUzk.ikz is a set of attributes

containing a key as a subset . Consider the relation

R(X) shown in Fig. 2, on the set of attributes X -

{A,B,C,D}. The set Z - {A,D} is a key of R(X)l thus



one of the superkeys of R(X) is the set Y = (A,B,D}.

__A _ B C - D

al bl cl d
- a 2  b 2  c 2  dl I

al bl Cl d2
a2  b3  Cl  d2

Fig. 2. Relation R(X).

An important but difficult task to be completed

before a database can be used is that of determining

the set of keys for a given relation. To solve this

problem. the set of functional dependencies must

either be known or found from the relation. A

procedure to generate these dependencies and the keys

for a relation is presented later in this thesis.

i
.,I



CHAPTER III

PROPOSITIONAL LOGIC AND THE EQUIVALENCE THEOREM

As discussed in Chapter II, the determination of a

set of keys for a relation in a database can be a

difficult task. However, once a key has been located,

the data stored in the database can be easily

accessed. It would be very desirable, therefore, to

have a method of key generation for a relation. The

aim of the following discussion is to present a method

to locate the keys of a relation in a database using

the functional dependencies of the relation. In later

chapters, this algorithm will be used as a major part

of the FD-Key generation algorithm. The method of

locating the keys will be developed by examining the

equivalence between propositional logic and database

dependencies. Before this equivalence can be

discussed, some basic ideas of propositional logic and

Boolean analysis will be presented.

Propositional logic deals with statements that are

assigned a truth value. Each statement is called a

22TLxzitin, and it can have only one truth value,

either true or false.

12
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These statements are denoted by 2z21i±t2naL

mianT es APB,C, .... Using the logic operations &

(AND) and -> (IMPLY), an ±M2iA2lti Sl Al&A2 &...&An ->

Bl&...&Bk can be created. This implication is said to

be true if and only if all of the Bj's are true or at

least one of the Ai's is false. Hence, this

implication can be viewed as a statement

(proposition). Normally, & is represented by simple

juxtaposition of the variables. For example, the

above implication may also be written as

AlA2...An=>Bl...Bk. It should be noted that in this

thesis the symbol (=>) is used for conditional

implication. Normally, this symbol is used for

logical implication, and the symbol (->) is used for

conditional imlication. However, the symbol (->) is

reserved in this thesis for use with functional

dependencies; to avoid notational confusion,

therefore, the symbol (->) is used for conditional

implication. The following discussion presents some

basic ideas of propositional logic [8].

A fundamental inference-rule of propositional

logic is that of t u:±±n2a±oulam. This rule

states that the conclusion below follows from its

premises.

Major Premise: X->Y.

i
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Minor Premise: Y->Z.

Conclusion: X->Z.

The proposition Xa>Z is said to be a jg

.gni enc of the set of propositions {X->Y,Y->Z).

In general, we have the following:

tz j jni n. The proposition F is a In!ar=i

r 2zLInr of a set of propositions S, if for every

truth assignment P, the proposition F is true under P

when all the propositions of S are true under P.

In propositional logic, d, (the generation

*' of a conclusion from a set of premises), is performed

by invoking various inference rules. These rules

state that a specific conclusion can be obtained from

a specific set of premises. While these rules work

and are useful, a more simplified method of deriving

conclusions would be very useful.

Propositions satisfy a set of mathematical laws

that are used to define a Boolean algebra. The

relation -> (conditional implication) of propositions

can be translated into the relation I (inclusion) of

Boolean algebra. In particular, the statement

If X is true, then Y is true

can be represented by the two equivalent expressions
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X->Y, and

XjY.

The information in these expressions can also be

presented in two types of equations. These equations

can either be in the *equals-zero* or Oequals-one"

form of Boolean algebra. The equals-one form is found

by complementing the left side of the arrow and

' forming the logic OR of this result with the right

side. For example, the equals-one form of the

7 proposition X->Y is given by X' + Y - 1. The equals-

zero form is found by complementing the right side of

the arrow and forming the logic AND of this result

with the left side of the arrow. For the previous

example, the equals-zero form would be XY'IO. The

equals-one form states that "X is false or Y is true"

is a true statement. The equals-zero form states that

"X is true and Y is false" is a false statement.

Hence, the propositions X->Y, Y=>Z, and X->Z can be

represented as Boolean equations XY'=O, YZ'I-O, and

XZ'uO, respectively. It is a property ot Boolean

algebra that a sum is equal to zero if and only if

each of its summands is equdl to zero; hence, the

above equations can be written as one equation, i.e.,
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XY'+YZ'+XZ'-O. Each of the above summands is made up

of variables. A single variable, either complemented

or uncomplemented, will be called a ±itxn, and the

summands in the above equation will be called tz.ms.

Each term consists of a single literal or a product of

literals in which no literal appears more than once.
I-.

A term p is included in a term q if all of the

literals of q are contained in p. An Zp (sum of

products) formula is a single term or a sum of terms.

Two important types of terms will now be defined.

Dzlinitinn. An iMpiijnt of a function F is a

term p such that p is included in F.

ef iJnihion. A =TMe mj. of a function F is

an implicant p of F such that, for any term q, if p is

included in q and q is included in F then p and q are

equal.

Mlnir 2n=nilgi ±ntm. In 1937, A. Blake [61

showed that the sum of all prime implicants of a

Boolean function G is a canonical form for that

function. We shall call this the Is-ate cnon-n±a± frm

for G and denote it by BCF(G).

There are several methods of generating the Blake

canonical form of a Boolean function. This thesis

will only deal, however, with the method of ±i± 1

2unnl3nss, which is based upon the following
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definitions.

f-ltnj~jg2. Two terms p and q are said to have a

literal in opposition if

(i) term p contains a variable A that is

uncomplemented, and

(ii) term q contains the complemented variable A'.

flnin±±nn.Let two terms T1 and T2 of a Boolean

formula F have exactly one literal in opposition,

i.e., let T1 - X'P and T2 - XQ, where P and Q are

terms such that PQ is not equal to zero. Then the

Sconan= of T1 and T2 is formed from the product PQ

by

(M) deleting the two opposing literals and

(ii) deleting any repetitions of a literal.

The method of generating the BCF of a Boolean function

using iterated consensus is given below.

aefin±t4±IUn. Given a Boolean formula F, BCF(F) can

be generated by the following procedure.

(i) Express F as an SOP formula.

(ii) Persist in the following operations as

long as possible:

(a) Append to the formula the consensus

of two of its terms, unless the

consensus is included in a term

I
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already present.

(b) Delete any term that is included

in another term.

trdin~itil. An SOP formula G is said to be

1=m&I1 ±nj±n l in an SOP formula F if every term of

G is included in some term of F.

The following two theorems will be presented

without proofs. For a more formal presentation, see

Blake [6].

Tz.21.. An equation F-O is a conclusion of the

equation G=O if and only if the function F is included

in the function G.

Thenan.. Let F and G be SOP formulas. Then F is

included in G if and only if F is formally included in

BCF(G).

To clarify this Theorem, let us examine the

following expressions (hypothetical syllogism):

Propositions Equations

MajorPremise: XU>Y XY'-O

Minor Premise: YU>Z YZ'.C

Conclusion: Xm>Z XZ'-O

After forming the SOP formula G - KY' + YZ',

BCF(G) can be found by iterated consensus: BCP(G) -

XY' + YZ' + Xz'. But, XZ' is formally included in
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BCF(G), so XZ' 0 o is a conclusion of the equation G

0. This conclusion is equivalent to the proposition

X->Z, and hence the same result is found by two

different but equivalent methods. As mentioned

earlier, a simplified method for inferring conclusions

was desired. Using the Blake canonical form to

generate a conclusion from a given set of

propositional premises, stated as equations, is such a

method. For a more detailed study of this procedure

*tee (7].

=1[ f t2=een otsona- toi and gase1

For a given set of propositions {Am>B,C=>D} and a

corresponding set of functional dependencies

{A->BC->D), the syntactical similarity of the sets is

very apparent. However, thiis similarity does not

necessarily imply that two corresponding elements of

these sets are equivalent. Fortunately, Sagiv, et.

al. (21] has proved the following theorem. This

theorem states that a set S of functional dependencies

is equivalent to a corresponding set of propositions

S* , where S* is obtained by replacing the dependency

symbol(->) with the conditional implication symbol

(a>).
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Z±i~zn ei hbeem. Let F be a fun-tional

dependency and let S be a set of dependencie-. Then

the following are equivalent:

(i) The functional dependency F is a

consequence of the set S of

functional dependencies.

(ii) The proposition F* is a logical

consequence of the set S* of

propositions.

This theorem states that the set S = {A->B,B->D}

of functional dependencies has an equivalent set S* =

{A=>BB=>D} of propositions, which is generated by

replacing the symbol (->) with (->). Furt,.er, since

the proposition A=>D is a logical consequence of S*,

the equivalent functional dependency A->D is a

consequence of S.

This theorem is a very bold statement. It allows

any database problem concerning functional

dependencies to be solved by the techniques of

propositional logic and guarantees the solution to

hold for the dependencies of the database. Since the

available tools of propositional logic are generally

much easier to implement than the inference rules for

dependencies, a very difficult database problem may
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easily be solved with propositional logic. Hence, the

preceding method of iterated consensus may be used to

generate the solutions for a given problem concerning

the dependencies of a database.

Zg2n. As an example of the power of

this theorem let us examine the relation R(X) in Fig.

1 of Chapter II. The following functional

dependencies exist in this relation. Note that the

attributes are replaced by one-letter symbols to make

the variable manipulations clearer.

NAME- >COURSE N- >C

NAME,TIME- >ROOM,COURSE NT- >RC

NAMEROO K>COURSE NR- >C

COURSETIME->NAMErROOM CT->NR

COURSE, ROOM->NAME CR- >N

TIME, ROOM- >COURSE,NAME TR- >CN

After writing the preceding six dependencies in

their equivalent propositional logic forms, the

following equations are generated by complementing the

right sides of the equivalent propositions and forming

the logic AND of this result with the left sides of

the propositions.

N- >C CI N-0
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NT->RC R'NT I C'NTw

NR->C C ' NR-O

CT->NR CN'T + CRITwO

CR->N CN ' R-0

RT->CN C'RT + N'RT-O

Since these equations are in equals zero form,

they are equivalent to the single equation G - 0,

where the function G is the logical sum of their left

members, i.e.,

G - C'N + R'NT + C'NT + C'NR + CN'T + CR'T + CN'R +

C'RT + N'RT.

To generate the keys associated with a relation, a

method based upon the one developed by Delobel and

Casey [13] will be used. For a given relation, the

minterm M, which is the juxtaposition of all of the

attribute symbols, is always a superkey of the

relation. If K is the juxtaposition of all the

attributes of a key of the relation and if G - 0 is

the equation representing the set of dependencies of

the relation, then the implication

[G = 0] -> [K - M]

defines all of the keys of the relation.

For the above implication to be true, either G - 0
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must be false, i.e., G - 1, or K must be equal to M,

i.e., K and M must both be false, or K and M must

both be true. Hence, the above implication can be

expressed as the equivalent equation

G + KM +KIM' - 1.

By applying some generally known properties of

propositional logic and Boolean algebra to the above

equation, the following equivalent forms can be

derived.

K(M + G) + K'(M' +G) = 1

K(M'G') + K'(MG') - 0

G'M K (G'1M')

G'M K G + M

Let us examine the formula G. Since G represents

the original dependencies of the relation, each term

of G will contain at least one complemented attribute

symbol. Hence, G may not include a minterm

containing only uncomplemented attribute symbols. The

minterm M containing all of the attribute symbols in

uncomplemented form is therefore not included in G.

Thus M is included in GI, i.e.,

M G'.

The foregoing inclusion is equivalent to the Boolean
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equation

M4 GIN;

therefore, the expression

GIN I X G + M4

is equivalent to

K K I G + M4,

which is equivalent in turn to

M I K I BCF(G + M).

The reason that BCF(G + M) is used is that it includes

all of the information available in terms that contain

the fewest possible attribute symbols.

To determine the keys for a relation, only the

terms of BCP(G+M) that contain no complemented

attribute-symbols are considered. This can be

explained by re-examining the bounds on K. The

minterm M is the product of all of the attribute

symbols, and it forms the lower bound on K. So M must

be included in K, and hence K can only include

uncomplemented attribute symbols. But K must be

included in BCF(G + M); therefore the terms of

BCP(G + M) that are keys must contain only

uncomplemented attribute symbols.

Prom the previous example for Relation R(X) of

Fig. 1 where C * COURSE, N - NAME, R * ROOM NUMBER,

t!
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and T - TIME, the term M is found to be M = CNRT.

Using the set {N->C, NT->RC, NR->C, CT->NR, CR->N,

TR->CNJ of functional dependencies for this relation,

together with the equivalence theorem, the set {N->C,

FNT->RC, NR->C, CT->NR, CR=>N, TR=>CN} of equivalent

propositions is generated. The formula

G = N'RT + C'RT + C'NT +NR'T + CN'T +CR'T +CN'R

is produced by converting each proposition into an

equation of equals-zero form, forming the sum G = 0 of

all of these equations, and writing the formula G.

Adding the term M to G and calculating BCF(G + M)

yields the result

BCF(G+M) = CT + RT + NT + C'N + CN'R.

Using the expression

M K K K BCF(G + M)

for the bounds on the unknown key K, the relation

CNRT K I CT + RT + NT + C'N + CN'R

is generated. Now by examining the terms of BCF(G+M)

containing no complemented variables, the keys CT, RT,

and NT for the relation R(X) of Fig. 1 are found.

Also, the superkeys of a relation can be found by

concatenating any number of uncomplemented attribute

symbols in the relation to the symbols of a key.

Therefore, CNT, CRT, NRT, and CNRT are superkeys of

the relation;
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If the set of functional dependencies for a

relation is known, the above procedure will generate

all keys and superkeys that exist in the relation. If

an algorithm existed to generate the functional

dependencies of a relation, then the generation of

keys for a relation could be implemented on a computer

-." or dedicated processor designed to perform

propositional analysis. This desired dependency

generation algorithm has been developed, and it will

be presented in the following chapter. Once both of

these algorithms have been presented, they can be

combined into a single FD-Key generation algorithm.



CHAPTER IV

GENERATION OF FUNCTIONAL DEPENDENCIES

For the key generation algorithm of Chapter III to

be applied, the functional dependencies of a relation

must be known. We present in this chapter a procedure

for generating the functional dependencies of a

relation directly from the rows (tuples) defining that

relation. When combined with the key-generation

algorithm, this procedure enables the keys of a

relational database to be derived quickly and

conveniently. We call the combined procedure the f-

The FD-Key algorithm may be used to solve a number

of problems. Suppose a programmer were assigned the

task of setting up a large database; then the

generation of the keys could be a very tedious and

time consuming task. By using the FD-Key algorithm,

the programmer could simply insert the database into

the computer system, execute the algorithm, and

receive the keys and functional dependencies of the

database as outputs.

As another example, suppose a database could be

updated by several different users. That is, several

27
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users could be changing data values of tuples in

the database. This process might create anomalies

in the database. Hence, a functional dependency for

the original database might no longer hold in the

updated version of the database. This type of error

may be detected in the following manner. After each

change of data. the FD-Key algorithm could be executed

on the new database. If the functional dependencies

generated from the new database were different from

the functional dependencies of the original database,

then the recent data changes had violated the

integrity of the database. Therefore, the data-updates

should be examined for an error.

This chapter will present the section of the FD-

Key algorithm that generates the functional

dependencies of a relation. To fully understand the

operation of this section of the algorithm, the

flowcharts of Appendix A and the examples contained in

this chapter should be closely examined.

The algorithm makes extensive use of partitions,

whose definition we now recall (161.

finzI± -n. A p P of a non-empty, finite

set S is a collection of non-empty subsets of S. The

partition is denoted by P - {BIB2,...,Bk}; the
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subsets B,....,B2 are called the hi~rA2 of the

partition P. The blocks of a partition must satisfy

the following two conditions.

(i) The intersection of any two blocks, Bi and

Bj for i not equal to j, is the empty set.

(ii) The union of all the Bi's is the set S.

The problem to be solved can be stated as follows:

given a relation R and a specific attribute A

contained in the relation, generate the functional

dependencies of R that contain A on the right side of

the arrow. The desired dependencies will have the

form X->A, where X may be the concatenation of several

attribute symbols. By continuing this process for all

of the attributes, the set of functional dependencies

for the given relation will be generated.

The. algorithm to generate the functional

dependencies manipulates the data in the relations of

the database in three different ways. The first data

manipulation involves partitioning. Specifically, the

tuples of the original relation are placed into a

number of relations containing two sub-relations, each

of which is generated by using a two-block partition

of the data values for an attribute in the original
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relation. After formation of the sub-relations, the

second type of data manipulation is performed. Here,

the tuples in each pair of sub-relations are compared

and a Boolean sum of attribute symbols is generated.

This sum actually represents the key for the two

tuples in the sub-relations being examined. By

repetitive generation of these sums for each pair of

tuples, the keys of the pair of sub-relations can be

found. After all of these sums are generated for the

pair of sub-relations, a product of sums (POS) formula

is generated by forming a Boolean product of all of

the sums. Each pair of sub-relations will be

subjected to this procedure, and a group of POS

formulas will be generated. Each of these formulas

will either be zero, (indicating that no key exists

for the pair of sub-relations) or a product of sums.

If a formula is zero, this means that no functional

dependency can be found for the chosen attribute of

the original relation. If all of the formulas are

products of sums, however, a third type of data

manipulation is needed to generate the functional

dependencies of the relation.

This final data manipulation involves some

techniques of Boolean algebra. All of the POS

formulas generated from the pairs of sub-relations are
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multiplied together to form one large POS formula.

This last POS formula is converted to a sum of

products (SOP) formula and simplified as much as

possible. The SOP formula now contains all of the

information needed to produce the set of functional

dependencies for the original relation. Each term ofIthe SOP formula contains the attribute symbols that
'4. are on the left sides of the arrows in the functional

dependencies that have the chosen attribute from the

- i original relation on the right side of the arrow.

In the development of the functional dependencies

for a relation, the following three assumptions will

be made.

(1) The data-values of the relation will not be

updated during the development period.

(2) The relation will contain a finite number of

tuples.

(3) The relation has a finite number of

attributes.

The algorithm to generate the functional

dependencies of a relation will now be presented in

seven steps.

. Choose an attribute to appear on the right

side of the functional dependencies.

I

I
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i! j. Generate the set, L, consisting of one

entry for every unique data value in the column under

the chosen attribute.

fi±: "  Generate a sequence (PO*F*fPn*) of

partitions of the set L in the following manner:

(i) Let i-a0. P* contains all the data values of

the set L in one block.

(ii) If the number of elements in the largest block

of Pi* is less than or equal to two, stop the

operations. Otherwise do (iii).

(iii) Let i=i+l, and generate a new Pi* that contains

2i blocks. The blocks in the new partition

are foundby splitting each of the blocks in

the preceding partition into two disjoint

blocks whose cardinality differs at most by

one. If a block in the preceding partition

contains an odd number of elements, the left

block of the new pair of blocks will contain

one more element than the new right block. Go

to (ii) and repeat.

Zl. Generate another sequence of partitions

of two blocks each, in the following

manner:

(i) Let i - 1, and i - 1. Set Pi n Pj*"
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(ii) Pi+l is made up of two blocks such that

the left block contains the left half of

each block of Pj** The right block of

Pi+l contains all the elements in Pj

not present in the left block of Pi+I.

If a block of Pj* contains an odd number

of elements, the extra element is placed

in the left block of Pi+l.

(iii) If P. is the last partition, stop the

procedure. Otherwise, let i - i+l, and

j - j+l.

The previous two steps have been designed to

provide maximum skewing of the partitions. That is,

the number of elements in the left block of each Pi is

as large as possible. This procedure will minimize

the number of data comparisons necessary in the sixth

step of the total algorithm.

&pt2 J. Generate n copies of the relation being

tested, where n is the number of generated Pi

partitions. Split each copy of the relation into two

ajj-uze1 nsL according to the data values found in

the blocks of the Pi's. Delete the columns

corresponding to the attribute being tested from each

of these copies. Let Ril and Ri2 denote the ith pair

j.
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of sub-relations, where the subscripts il and i2

represent the tuples associated with the data values

contained in blocks one and two, respectively, of

partition Pi. The generation of the sub-relations is

outlined below.

(i) Let i-i, j - the numerical position of the

chosen attribute in the list of attribute

symbols, Pi = the ith two-block partition of

the set of data values for the chosen

attribute, and Tl - the first tuple of the

relation.

(ii) If the jth data item of Tl is in the left block

of Pip then place Ti in the sub-relation Ril.

Otherwise, place T1 in the sub-relation Ri2.

(iii) If T1 is the last tuple of the original

relation, then go to (iv). Otherwise, let T1 =

the next tuple of the relation, and go to (ii).

(iv) If i-n, stop this procedure. Otherwise, let

i-i+l, let Tl - the first tuple of the relation

and go to (ii).

A ft. Generate a Boolean formula EI for each

sub-relation Ri . The formula generated will be in a

212dr 2f sums, POS, form. That is, a sum of

literals logically multiplied by other sums of

literals. These formulas are generated by the
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following procedure.

(i) Let i-1, obtain both the first tuple t1

of the sub-relation Ril and the first

tuple t 2 of Ri2. If Ri doesn't exist, go

to Step 7.

(ii) If tl-t 2 , abort the dependency algorithm

since no functional dependencies exist

with the chosen attribute on the right

side of the arrow. Otherwise go to

(iii).

(iii) Compare the data values under

corresponding attributes of each tuple.

If any pair of data values are distinct,

insert their attribute name into a sum S.

Continue this procedure until all pairs

of data-values in t I and t 2 have been

exhausted, then go to step (iv).

(iv) Insert the sum S as a product in the POS

formula EX. Go to step (v).

(v) If t2 was the last tuple of Ri2 and t1

was the last tuple of Ril, let i-i+l and

go to step (i). If t 2 was the last tuple

of R12 and tI was not the last tuple of

Ril, replace tI with the next tuple of

I
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Ril and t2 with the first tuple of Ri2;

then go to step (ii). If t2 was not the

last tuple of Ri2 , replace t2 with the

next tuple of Ri2 and go to step (ii).

It was stated previously that maximum skewing of

the partitions will minimize the number of tuple

comparisons. For example, assume the relation Ri

contains n+k tuples such that the sub-relations Ril

and R12 contain n and k tuples, respectively. If k is

much smaller than n, so that k-n-p, where p>O, then

the number of tuple comparisons required to generate

the formula EI is nxk-nx(n-p)-n 2-np. But if k and n

are equal, then the number of comparisons required is

nxn-n2. And if k-n+l, then the number of comparisons

would be even larger, i.e., nxk=n(n+l)-n 2+n. So it is

clearly evident that maximum skewing of the partitions

Pi's is necessary to minimize the number of tuple

comparisons.

fd !. Generate the functional dependencies for

the relation. These dependencies will contain the

chosen attribute on the right side of the arrow. The

procedure is outlined below.

(i) Let the function EA be composed of the

product of all the El functions

previously found in the sixth step of the
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algorithm.

(ii) Convert the POS form of EA to a SOP form

by multiplying the products and deleting

any terms that contain all the literals

of another term in EA.

(iii) Create a dependency with each term Ti of

EA and the attribute A, and place each of

these dependencies into a set DEP. These

dependencies will be of the form Ti->A,

and DEP will be equal to {T

Tm->A}. The set DEP now contins all of

the dependencies from the original

relation that have the chosen attribute

on the right side of the arrow.

To clarify the operation of the algorithm, the

relation R(X) in Fig. 3 will be used to generate an

example for each step of the algorithm. This relation

can be found in [21]. Also, some supplementary

examples are given to clarify steps of the algorithm

that are overly simple when applied to this relation.
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IA lB C ID I

I al b2 I d2
I a2  Ib 3  cl dl
I a bl cl d2

a2  j b3  ClI d2al dl
Ia l  jb 2  c 2  d I

Fig. 3. Relation R(X).

The first step of the algorithm states that an

attribute to appear on the right side of the

functional dependencies must be selected. So, in the

example relation R(X), the attribute B will be chosen.

The second step of the algorithm generates the set L

of data values associate.- with this attribute. For

our example, this set is L-{bl#b2 ,b 3 }.

Performing the next step of the algorithm on our

relation the sequence of partitions (P 0 *,P1 *) will be

generated. These partitions are sets that contain

other sets, hence

P0* a {fblb 2b3 }}

P* - {{blb 2 ),{b 3 l}

is the correct manner of representing these

partitions. This notation contains many braces, and

it needs to be simplified. Henceforth, all partitions

will be denoted by deleting the braces of the blocks
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of the partitions, e.g.,

P0* {blb2 b3 }

PI* {blb 2 ,b3 }"

To further clarify this step of the algorithm, let

us examine the flowchart of Fig. 9 and another set of

data values, namely, Li - {al,a 2 ,a 3 ,a 4 ,a 5 ,a 6 ,a 7 ,a 8 ,

a 9 ,al 0 ,all,al 2 }. The following partitions will be

* generated by this step of the algorithm.

P0 = {ala 2a3a4a 5a6a7a8a9alOallal2}

P* = {ala2a3a4a5a6,a 7a8a 9alOallal2 }

P2* = {ala 2a3,a 4a5a6 ,a7a8agalOallal 2}
=P3* -ala 2 ,a3 ,a4a5 ,a6,a7a8 ,ag,al0 all,al2}

Now, performing the fourth step of the algorithm

on the sequence of partitions generated from the set

L, the partitions

P1 a P1 * = {blb 2 ,b3}

P2 a {blb 3 ,b2 }

will be generated. Again, a flowchart and another

example is given to clarify this step of the

algorithm. Examining the flowchart of Fig. 10 and

the sequence of partitions for the set Ll, the

sequence

P1 - Pi*

P2 - {ala2a3a7asaga4a5a6aloallal2 }

P3 " {ala2a4asa7asalOall,a3a6a9aI2}
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P4 = {ala3a 4a6a7a9alOal2,a2a5a~all}

of partitions is produced.

* The fifth step of the algorithm will generate

several copies of the original relation R(X). Using

the partitions P1 and P2 of the set L, the copies RI'

and R2 ' of Fig. 4 for relation R(X) of Fig. 3 will be

generated. This figure shows how the two copies RI ,

and R2 appear before the columns corresponding to

attribute B are deleted.

The first copy R1 , of R(X) is partitioned in the

following manner. Block one of partition P1 contains

the data values b, and b2 . Therefore, any tuple of

R(X) containing these data values under the column B

will be placed in the sub-relation R11 . Since block

two of P1 contains only b3, the sub-relation R12 will

only contain tuples that have the data value b3 under

the column B. Similarly for the second copy R2 ' of

R(X), R21 will contain tuples that have the data

values b and b3 under the attribute B. Likewise, R22

will only contain tuples that have the value b2 in the

column B.
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IB A IC ID I

lb1 i al 1 ol dl1
R l b2  Ial1 c2! d

Ib, al cl d2

lb3  Ia 21 c1  d1
R12  lb1~c 2 1

2- I I

A. (a) Copy R,' of relation R(X).

B IA IC ID

R21 1b3 Ia21 ci dli
bl al Icl d2

------ a 22 -3 -s-I1-2-
R2 b2  al &jIc2 d2

(b) Copy R2  of relation R(X).

Fig. 4. Copies of R(X) partitioned according to Pi1 s.

After the column of data associated with the

attribute B is deleted, the new relations Rl and R2

are as shown in Fig. 5.
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" A"C I D
I a- Ic - I d- I

Rll al I c2  d2 III _ a1 aI C1 I2 d2 I

c2I aI  I ci I d2 I

I a2  I cl I dl1l2 _!a2J cl d21

(a) Copy R1 of relation R(X)

I a I D I

, ,,d
I a, I c1  d2 I

R2 al c2 Id 2

(b) Copy R2 of relat.ion R(X).

*Fig. 5. Copies of R(X) with attribute B removed.

The sixth step of the algorithm will be

illustrated by examining the two relations of Fig. 5

and the flowchart of Fig. 12. In the generation of El

for relation RI , the tuples tl-<al,cl,dl> and

t 2 0<a 2 ,cl,dl> are the first two tuples examined. Now

by comparison of data values, it is found that only

attribute A will be in the first sum S. At this

point, therefore, El consists of only one sum, (A).



After performing the tests in step (v) the tuple t2

will be changed to t2-<a2,c1 ,d2 >° and t1 will remain

the same. These two tuples are compared, and the new

sum S-A+D is generated. The new sum S is placed in the

formula El, and this changes El to ElI(A)(A+D). Again

the tests in step (v) are performed, and this time

both tI and t2 will be changed to tl=<al,c 2 ,d2 > and

t2=<a 2 ,cl,dl>. After all the tuples of R1 have been

examined, the formula El is found to be

El-(A) (A+D) (A+C+D) (A+C) (A+D) (A) (A+C) (A+C+D),

which is equivalent to the formula EI-A. Performing

the same operations on the relation R2 will yield the

result

E2-(C+D) (C) (C) (C+D) (A+C+D) (A+C) (A+C) (A+C+D),

which is equivalent to E2=C. For the final step of the

algorithm, the formula EB and its derivation is shown

below.

EB-(El) (E2)

EBa(A) (C) =AC

Therefore the set DEP contains only tkrt ctional

dependency AC->B. By repeated application of this

algorithm for the other attributes, the complete set

(B->A, AC->B, B->C}

of functional dependencies for relation R(X) of Fig. 3

kl ..- No



44

can be produced.

Recalling the key generation algorithm presented

in the preceding chapter, the following results can be

found from the set of functional dependencies. Since

the relation R(X) contains the attributes A, B, C, and

D, the term M will be equal to ABCD, and from the

preceding set of dependencies the equivalent equation

G = 0 can be derived, where G = A'B + AB'C + BC.

Using the technique of iterated consensus on M and G,

the following results can be obtained.

BCF(G+M) * A'B + AB'C + BC' + BD + ACD

ABCD I K A'B + AB'C + BC' + BD + ACD

Therefore the set of keys for the relation R(X) of

Fig. 3 is (BD,ACD), and the corresponding set of

superkeys is {ABD,BCD,ABCD}. The results generated

above may also be generated by visual observation for

this relation. A much larger relation may be very

hard to analyze visually, but the preceding algorithm

will always generate the desired results. The

implementation of this algorithm would be very easy in

a language designed for logic programming and

character string manipulations. Fortunately, the

programming language PROLOG has these capabilities and

it is very easy to operate from a user's view. This

language is presented in the next chapter and the



actual implementation of the FD-Key generation

algorithm, using PROLOGr will be presented in Chapter

V1.



CHAPTER V

INTRODUCTION TO PROLOG

In the past few years, several logic programming

languages have been developed. One of the most

powerful of these is PROLOG, a programming language

based on predicate calculus; this language was

developed at the University of Marseille starting

around 1970. A later, interactive version of PROLOG

was implemented on the DECsystem-10 in 1977 [22].

This newer version, containing both an intepreter and

a compiler, allows the user to easily write clear,

readable, and concise programs. The interpreter aids

in the quick development and testing of programs, and

also allows access to compiled programs. The compiler

produces code that executes ten to twenty times faster

than the interpreter, but it is advisable to compile

only well-tested programs. Any compiled program can

easily be provided with an interpretative interface to

the programmer. We present a brief summary in this

chapter of the features of PROLOG; for a more detailed

description, see [201 and E111.
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Generally, any object in PROLOG can be called a

. A term can either be a =nsant, a yTlaye, or

a =mund teTm. A constant can be any integer between

-131072 to 131071 or an &=Z. The integers can be

written in any base from two to ten. An atom can be

any sequence of characters, and any possible confusion

with other terms should be eliminated by enclosing the

sequence in quotes. For example, 'Rabbit', rabbit,

[, and - are all atoms.

A variable is distinguished by an initial capital

letter or the leading character 0-0. Whenever a

variable is only referenced once, it can be denoted by

the single character _ For example, Rabbit, X,

-32, _result, and _ are all variables.

A compound term is formed with a fun== of some

Sz±± greater than one. The arity of a functor is the

number of terms used as arguments. In the term

member(X,[HIT]) for example, the functor "member" has

an arity of two since X and [HIT] are the two terms

used as arguments. The term [HIT] represents a list,

where B is the first element and T is the tail or all

remaining elements in the list. An atom may be

considered as a functor of arity zero.

The names and arities of functors are totally
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arbitrary. That is, the programmer can introduce as

many different arguments for a desired functor as

needed. PROLOG contains several built-in functors
used to perform basic system operations.

A PROLOG program consists of a set of men~rz
which contain rd~ja.. These clauses are made up of

terms, organized into two basic forms. The

propositional logic form of the first type of clause,

called a dti C Ms, is of the form

A<-Bl&B 2&B3

where A is called the h of the clause and B is

called the bo ] of the clause. This clause is read "A

is true if B1 and B2 and B3 are true." A conditional

horn clause may also have the form

A<-Cl+C 2

where this clause is read "A is true if C1 or C2 is

true.0 The second type of Horn clause, known as a

unit C±JMi, is a true statement such as

A

which is read OA is true."

The PROLOG language requires the head of a clause

to be separated from the body by the symbol :-, which

represents the word "if* in a logic statement. Also,

any clause mupt end with a period. For example, the
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three preceding clauses translated into PROLOG would

be written as

A:-B 1 ,B2 ,B3*

A--C 1 ;C2

A.

These clauses taken together can be viewed as

procedure A, where B1 , B2, B3, C1 , and C2 are gglis or

other procedures to be called by the PROLOG program.

The goals in the body of a procedure are separated by

the symbols *,* or ,* which represent logical

conjunction and disjunction, respectively. These goals

are procedures that impose conditions upon the head of

the clause.

PROLOG also contains provisions for expressing

=M m t . These rules provide an easy method of

parsing strings into specific components, and using

these components in any manner specified by the

program. The typical grammar rule has the form, LHS-

>RHS, and it is read as "a possible form for the left

hand side is the right hand side." Any PROLOG

procedure can be used as a condition on the right side

by simply enclosing the procedure in braces, "[}0.

Grammar rules may seem very confusing when first

encountered, but they can be written as ordinary

PROLOG clauses. For example, the grammar rule
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p(X)-->q(X) can be translated into the clause

p(X,Sl,S)--q(X,SlS). As an example, the procedure

delim-->"+".

delim-->[].

is a rule to remove the character 0+" from a list of

characters. If 0+0 were not the first character in

the list, the original list would be the result.

PROLOG zment-c can be presented in two different

ways. The R se -ic describes the sequence

of states through which the program passes during an

execution, and the drXnzX± az.mzn ±= allows the

program to be broken down into many independent

programs or procedures. These smaller procedures are

usually clear and easily executed.

The declarative semantics makes no reference to

the ordering of clauses or procedures in a goal or

program. This type of semantics is used to

recursively define the conditions necessary for the

head of a clause to be Z That is, the head of a

clause is true if all of the terms in the body of the

clause are also true, and each term is true iU it, in

turn, is the head of a clause instance which is true.

Also a term in the body of a clause may be a compound
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term which is the disjunction of two other terms. For

example, the clause

A:-B;C.

is true if the compound term B;C is true, and the

compound term is true if either B or C is true.

The procedural semantics depends upon the ordering

of clauses in a program, and the goals in a clause,

for crucial program control information. The

execution of the program depends upon this

information, and the reordering of a set of goals or

clauses may completely change the function of a clause

or program. The execution of a goal is performed by

searching for the first clause whose head matches the

goal. This is done in a top-down fashion. That is,

the matching starts at the top of the program and

continues until a match is found. If a match is

found, the goals in the body of the clause are

executed from left to right in the same manner. If no

match is found, the system bntkXn~ka to the most

recent clause, discards any substitutions caused by

that clause, and the search for another match of the

original clause is continued from this clause down

through the rest of the program.

There is one other type of control information
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available in PROLOG, called the n symbol. This

symbol, "I", is used as a goal in a clause and always

succeeds when it is first called. If PROLOG ever

backtracks to the cut symbol, the goal that caused the

clause containing the cut symbol to be called will

always fail. This symbol allows the programmer to

force a goal to succeed or fail after it has been

partially executed.

Two simple examples of PROLOG programs will be

presented. The first example will consist of a

program to solve the following logic problem.

Bob likes logic.

Mary likes logic.

Bob likes anyone who likes logic.

What does Bob like?

The PROLOG program will consist of two unit clauses

and one conditional clause involving the predicate

"likes":

likes (boblogic).

likes (mary,logic).

likes(XY) :-likes(Y,logic).
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After the program has been interpreted by the

Icomputer, the input query
likes (bob,X).

will yield the results:

X-logicl

X-bob;

X=mary

Here, the symbol *;" is used to request an alternate

answer for the query after one answer has been found.

As another example, consider the problem of

concatenating two lists together to form a third list.

The procedure could be formulated as follows:

concatenate ([] ,L,L).

concatenate( [X IL] ,T, [X IK]) :-

concatenate(L,TK).

The predicate "concatenate" is defined by the program;

that is, PROLOG does not know what this procedure

means until it receives these statements. However,

the symbols [] and [ I] are known to the language. The

first clause states that the empty list concatenated

with a second list is simply the second list. The

second clause states that the list [X IL] concatenated

with the list T is the list [XIK] if the list L
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concatenated with the list T is the list K. When the

query

concatenate([a,b,c] ,[d,e,f] ,K)

is presented to this program, the variable K will be

returned as the list [a,b,crd,e,f]. The above

procedures are but two of many possible examples, and

it should be noted that an excellent source [11] of

programming examples exists.

The next chapter contains a description of the

operation of the FD-Key algorithm presented in the

preceding chapters. This description contains the

syntax rules that must be obeyed for proper operation

of the program. and some possible modifications that

the user may wish to use.
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CHAPTER VI

SYSTEM REQUIREMENTS AND SYNTAX

The purpose of this chapter is to present the

syntax rules and system requirements for the correct

implementation of the FD-KEY algorithm as it is

currently programmed using the language PROLOG.

:9.m rz~uix~tmrn. For the FD-Key prcgram in

Appendix C to run correctly, the user's computing

system should meet the following requirements. First,

Version 3 of Dec-10 PROLOG or its equivalent must be

used. Otherwise, several clauses in the program will

not function correctly. For example, any clause that

uses the built-in predicate 'read' to input

information from a data file will usually have a test

for the end of file marker, 'endof_file'. If an

earlier version of PROLOG is used, this marker may be

':-end', and the program will never cease to input

information from the data file. Therefore, a loop

will be created, and the program will either fail or

yield an erroneous result.

The other requirement is that the user's system

must have an adequate amount of memory storage

available. This is because the FD-Key program

55
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generates several files for data input and output

during execution. Also, the program and its compiled

version require several blocks of storage. It should

be noted that the program deletes all of the data
1i

files created during execution. The only exception to

this is the file 'propa', which contains the

functional dependencies of the input relation.

ePDZz -a-1ZTitm. The FD-Key algorithm consists

of two main routines. The first routine is the

functional dependency algorithm, presented in Chapter

IV. The second routine is the key generation algorithm

presented in Chapter III. The operation of these

algorithms is explained in the following section of

*, this chapter.

The FD-Key algorithm is designed to perform the

following tasks:

(i) Input a list of attribute symbols for a

given relation.

(ii) Output the functional dependencies for

the relation.

(iii) Output the keys for the relation.

(iv) Output run-times for various routines in

the algorithm.

Since the language used is PROLOG, all constants

must be in lower case letters. For example, the list
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of attribute symbols for relation R(X) of Fig. 3,

would be [a,b,cd]. If the attribute symbols in the

list were capital letters, PROLOG would interpret the

contents of the list as unknown variables. This

interpretation could lead to meaningless answers or to

the failure of the entire program. It should be noted

that the ordering of the attribute symbols is very

important. The symbols must be in the same order as

the columns of the relation. For example, if the list

for R(X) of Fig. 3 were changed to [b,ad,c], the

algorithm would not generate the correct functional

dependencies. The generated keys would be invalid for

the relation.

As the FD-Key algorithm is currently programmed,

the relation to be examined must be stored in a

particular form. Each tuple of the relation must be

stored as a list. For example, the tuple

<al,bl,cl,dl>

would be stored as the list

(al,bl,cl,dj].

Each list must be followed by a period or the program

will not be able to input the data correctly. The

file 'Abase' contains the lists that correspond to the

tuples of tne given relation. To run the main

LIi
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algorithm, the system must be in PROLOG, and the

compiled version of the FD-Key program must be

restored. For example, consider the output of

Appendix C for the relation R(X) of Fig. 3. The

program is called by the predicate

mainthing([a,b,c,dl).

The argument, [a,b,c,d], of the predicate is

simply the list of attribute symbols for the relation

R(X). When this predicate is executed, the relation

in the file 'dbase' is examined; the functional

dependencies for this relation are stored in the file

'propa', and the keys of the database, along with the

run-times for various routines in the algorithm, are

output to the user.

If the user wishes to generate the keys for a

relation whose functional dependencies are known, the

set of dependencies must be stored in the file

'propa'. Each dependency must be written as a logical

proposition followed by a period. Thus, the

functional dependency A->B would be stored in the

file 'propa' as

a->b.

To call the key generation section of the program, the

following predicate is used:

solve-for-keys([a,b,c,d]).
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In this example, the argument [a,b,c,d] is the list of

attributes for the relation containing the functional

dependencies found in the file 'propa'.

To make any other predicate of the program

available to the user, a public statement must be used

to declare the predicate, and the new program must be

compiled. For example, to declare the predicate

concatenate(X,Y,Z).

of Chapter V, the statement

:-public concatenate/3.

must be inserted in the program. The format of this

statement is

:-public name/arity.

In this statement, the name of the predicate is

separated from the number of its arguments by the

slash.

The flowcharts of the FD-Key algorithm can be

found in Appendix A. These flowcharts are written at

a level which will enable the user to translate the

algorithm to another language if PROLOG is not

available. The PROLOG program of the FD-Key algorithm

is found in Appendix B. This program contains

numerous comments designed to explain each set of

clauses. Generally, the purpose of the set of clauses
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and a brief example is contained in each comment.

Appendix C is made up of some sample runs of the PD-

Key algorithm for various relations. Each run

contains the input commands to the computer, a listing

of the input relation, a listing of the keys for the

relation, and a listing of the functional dependencies

generated by the algorithm.



CHAPTER VII

PROPOSALS FOR FUTURE WORK

There are a number of ways in which the present

FD-Key routine might be improved, i.e., made more

efficient or extended in application. Three such

improvements are detailed below.

Zzi.Mj 21 = i je j 22c . Since the

key generation routines depend upon two separate

calculations of the Blake Canonical Form, a processor

capable cf performing this calculation in hardware

would be very advantageous. Fortunately, an

inferential processor has been proposed (8] that can

generate the Blake Canonical Form very quickly. This

device receives a sum of terms formula from a host

computer and outputs the Blake Canonical Form of this

sum to the host. By using this type of device, a

large portion of the key generation program could be

replaced. A revised algorithm to generate the keys is

presented below.

(i) Input the set S of functional

dependencies for the

relation.

(ii) Express the set S as a Sum of

Products formula F.
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(iii) Add the term which

corresponds to the list of

attributes to F.

(iv) Output F to the hardware

processor.

(v) Input BCF (F) from the

processor.

(vi) The set of keys K corresponds

to the terms of BCF(F) that

contain only uncomplemented

literals.

This key generation algorithm clearly reduces the

amount of software used, and consequently the cost of

processing and the computer time required would be

reduced. By using this technique, the algorithm may

be speeded up to be used in a real-time data

processing situation. Another method of speeding up

the key generation routine is presented in the next

section.

Mt4l.e-d nda- lnzTza±±on. As the FD-Key

algorithm is presently formulated, only functional

dependencies of a relation are manipulated. The

inclusion of the information contained in the multi-

valued dependencies of the relation would speed up the
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key generation routine. However, two problems remain

to be solved before this improvement can be made.

First, an algorithm to generate the multi-valued

dependencies from the relation would have to be

developed. Secondly, an algorithm to translate these

dependencies into a sum of products form would have to

be created. After these problems are overcome, the

new SOP formula could be added to the SOP formula for

the functional dependencies, and the resulting Blake

Canonical Form of this formula may provide some

additional information not contained in the original

Blake Canonical Form for the functional dependencies.

E1 M M ifi2ti~ns. Another area of

improvement would be to change the PROLOG

implementation of the FD-Key algorithm. The new

PROLOG program would be different in two ways. First,

the routines that manipulate the Boolean formulas

would be changed. These new routines would work

directly on the sum of products or product of sums

formulas instead of a list of lists. This

modification would not only speed up the data

manipulations, but it would also remove the routine

used to parse a formula into a list of lists.

Although this modification would involve major
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revisions in the program routines, a large saving of

run-time should be realized.

A second way to improve the efficiency of the

program would be to keep as much data as possible in

fast memory, that is, not to store data in files for

later use in the program. By keeping the data in fast

memory, the data retrieval time will be very short and

the algorithm would execute more efficiently. This

modification would also require major revisions in

many of the procedures, but the run-times should be

quicker.

M2XMLk:a :f2lM Un=11nin. A final area of future

work might be the development of an algorithm to

produce normal forms of a relation. If an algorithm

to generate both functional and multi-valued

dependencies existed, a method to generate the normal

forms of a relation based upon this algorithm could be

produced; The development of this normalization

routine should be a very straight-forward, since the

normal forms of a relation are generated by examining

the keys and dependencies that are associated with

that relation.
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CHAPTER VIII

CONCLUSIONS

The purpose of this thesis was to present an

algorithm capable of generating the keys and

functional dependencies of a relational database. The

feasibility of this algorithm was demonstrated by

implementing it with the computer language PROLOG.

The key generation algorithm is based on a

theorem, due to Sagiv, concerning the equivalence of

logical propositions and functional dependencies.

This theorem allows the formidable problem of key

generation to be solved by techniques of Boolean

analysis.

An algorithm based on partitioning was then

developed to generate the functional dependencies of a

database. These two algorithms were combined to form

the FD-Key algorithm, which was implemented using the

logic-programming language PROLOG.

This implementation involved many different uses

of propositional logic, Boolean analysis, and the

Blake canonical form for the actual generation of

functional dependencies and keys for a relational

database. The execution of the FD-Key algorithm

imposes a distinct set of computer system
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requirements. These requirements were presented and

some actual executions of the FD-Key algorithm were

given as examples.

The FD-Key algorithm provides a convenient method

for generating the keys and functional dependencies of

a database. This algorithm has produced a solution to

a difficult and complex problem of relational

databases, namely the identification of the keys

necessary to access the information stored in the

database. by using the techniques of propositional

logic and Boolean analysis.
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APPENDIX A

FLOWCHARTS FOR THE P-KEY ALGORITHM

67
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START

INP1UT LIST OF

ATTRIBUTE
S YMBOLS

START I NTERNAL
SYSTEM CLOCK(

CALL FUNCTIONALDEPENDENCY GENERATION
ROUTINE (mairithing1)

STOP INTERNALI
SYSTEM CLOCKI

OUTPUT TIME FOR
F GENERATION/

CALL KEY GENERATION
FROUTINE (slefor keys)l

CALL ROUTINE TO
DELETE EXTRANEOUS

DATA FILES
(clearfilesi)

Fig. 6 Main algorithm (mainthing).
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FOR RELATION RL

B

CALL ROUTINE TO
GENERATE ALL UNIQUE

DATA VALUES FOR
ATTRIBUTE X

(getdata list)

CALL ROUTINE TO
GENERATE LIST OF

PARTITIONS EP 1 ,...Pn
(listofparts)

CALL ROUTINE TO
GENERATE LIST OF

TWO-BLOCK PARTITIONS
Epi,. ,Pn1

(genblcksl)

M - NUMERICAL
POSITION OF X
IN THE LIST Y

(nwaattr)

7a.

Fig. 7. Functional dependency routine (mainthing).
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CALL ROUTINE TO
GEATE PROCOF
OFN FRMLAIFORTH
(f ormfunction)

< FUCINLN

CALL ROUTINE TO
FONRTE FRUCTOFA

FUCILDEPENDENCIES O

TSO FORMULA 
SUMmd OFPODC)FOML

(Covrps

7bLROTNET
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INPUT ATTRIBUTE SYMBOL X
AND THE LIST OF ATTRIBUTES

N - THE NUMERICAL

POSITION OF X IN THE I
LIST OF ATTRIBUTES (numattr)

INPUT Ti - FIRST TUPL
FROM THE FILE DBASE

(getdatal)

SPLACE THE NTH DATA VALUE
OF T1 IN THE LIST L

OF DBASE ?

YES INPUT T1
. NEXT TUPLE

-FORK THE LIST L1 BY
SREMOVING ANY DUPLICATE

DATA VALUES FROM L
[ (nodups)

RETURN THE LIST L1 'as

THE LIST OF DATA VALUES

STOP

Fig. 8. Routine to generate list of unique

data items (getdatalist).
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START

INPUT Li a LIST
OF DATA VALUES

GI'ENRTHE NO

ORES BLC i OF P NT

TWOE DISOIN OFQ~

Pi*I

ofERT P~ pattin

ofli*topartition
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G
INPUT L-

LIST OF Pi

*Pi -j

i -i+1

LEFT BLOCK OF Pi IS

FORMED WITH THE LEFT HALVES

OF EACH BLOCK OF Pj* AND THE

RIGHT BLOCK OF Pi IS FORMED WITH

THE REMAINING ELEMENTS OF Pj*

is
j n1

YES Jj+1

RETURN L2=
THE LIST OF TWO-
BLOCK PARTITIONS

Fig. 10. Routine To Generate The List Of

Two-block partitions (genbiockal).
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ITPARTITIONNMTH
I" FRO THE

F) 
O

[AR ES iT

I a.
Fig.~~~ 40 otn T raenCoisO h

Oriina RHOEliN RT (frXatii



77

REMOVE MTH DATA REMOVE MTH DATA
VALUE FROM Ti AND VALUE FROM Ti AND

PLACE THIS NEW PLACE THIS NEW
TUPLE Ti' INTO TUPLE Ti' INTO

THE SUB-RELATION THE SUB-RELATION
Sjl Sj2

IS T
k ib

YES TUPLE OF
DBASE

llb.
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X-ATTRIBUTE SYMBOLj
COPI1ES OF THE RELATION

INUT FIRST TUPLE/
Ti FROMAi

17 INPUT FIRST TUPLE
T2 FROM j

ATTRIBUT sL THTAV

'2v

Fig.12. outie t tea forfuntionldeend NsOn

generaO teOSfrua3 or FUNCTION AL
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KK
EOR SS T2 ULEX

RO CTOF ALLE2 '

DELETE[I-PU NEXSTINE TA
CONTAINS ALLL THT2TVL

OF ~ ~ ~ FO ARTE U NE

TELSTPLN

1F 2b.
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START

/ INPUT EX =
POS FORMULA/

MULTIPLY ALL PRODUCTS TO
FORM A SUM OF PRODUCTS

FORMULA FOR EX

CHANGE EX TO A LISTI
OF LISTS FORM

DELETE ANY LIST THAT
CONTAINS ALL THE LITERALS

OF ANOTHER LIST

Pig. 13. Routine to generate a sum of products

formula from a product of sums formula

(convertpos).
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START

INPUT THE FORMULA EX AS
A LIST OF LISTS FORM [HIT]

IX THE ATTRIBUTE SYMBOL

TO A PRODUCT HI

[DEPENDENCY l'->X TO

is H
<THE LAST LIST IN -NO-

!ES IREPLACE THE
i LIST [H IT]"

.... '5-_._WITH LIST T

Fig. 14. Routine to generate the functional

dependencies from a list of lists

(formdeps).
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START

ISTART INTERNAL SYSTEM CLOCKI

CALL ROUTINE TO CCNVERT
IMPLICATIONS TO SUM OF

PRODUCTS FORMULA (doti

BCF(L) (bcfs)

STOP SYSTEM CLOCK

O-UTPUT TIME FOR BCF(L)

START SYSTEM CLOCK

15a.

Fig. 15. Key generationroutine (solve-.for..keys).
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INPUT LIST OF
ATTRIBUTE SYMBOLS

1CALL ROUTINE O ENEAT
1THE KEYS (fid-te-k!eyJ

OUTPUT THE KEYS
OFOR THE RELATION

CSTOP, D

15b.
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START

NPUT FIRST IMPLICATIJXin>Y FROM PROPA

Fig.~~OMLMETO 76Yotn ocner mlctost

sum P of prdcS fo (doitU).
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START

FLi THE EMPTYL

INPUT THE SOP FORMULA F
ASIA LIST L, OF ASCII CODES

IS THE
ASCII CODE FOR NO

FORM A NEW LIST H BY
REMOVING THE ASCII CODES
TO THE LEFT OF '+' FROM L,

DELETE THE LEADING CODE FOR
+' FROM L TO FORM A NEW L

SREMOVE THE ASCII CODES FOR BLANKS,
&'S, AND PARENTHESES FROM H

SCONVERT THE REMAINING ASCII CODES

OF H TO A LIST OF LITERALS T

rAPPEND T TO THE LIST Li

17a.

Fig. 17. Routine to parse a sum of products formula

into a list of lists form (parseit).
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REMOVE THE ASCII CODES FOR

' BLANKS, &'S, AND PARENTHESES

FROM THE LIST L

CONVERT THE REMAINING
ASCII CODES OF L TO
A LIST OF LITERALS T

APPEND TTO
THE LIST Li

RETURN THE LI ST Li
OF LIST WHICH IS

EQUIVALENT TO A SOP
FORMULA F

STLOP

17b.
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START

INPUT THE LIST
OF LISTS [XILI

F - FIRST LIST IN (X ILI
N = SECOND LIST IN [X IL i

M = A LIST THAT CONTAINS LIST F

GENERATE THE LIST C OFT
LCONSESUS LISTS FOR M AND NJ

DELETE ANY LIST OF C OR[X ILl THAT CONTAINS ALL THE
LITERALS OF ANY OTHER

... LIST IN C OR [X IL]

APPEND REMAINING LISTS OF C}
AND [XIL] TO FORM THE NEW

LIST OF LISTS [XILI

LIS O- NEXTI NO

UNTESTED LIST
NO IN JXILL],

M - ALL LISTS
R ETURN [X lL] AS THE BCF i  OF [XILI TO
[OF THE ORIGINAL LIST I LEFT OF N

C D
Fig. 18. BCF routine for a sum of products

formula F (bcf9) .
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" / INPUT [X[L] - BCF OF THE
9,UNCTIONAL DEPENDENCIES, AND

[XlILl1] THE LIST OF ATTRIBUTE
SSYMBOLS FOR THE RELATION

APPEND [XiILl] TO THE LIST
[XIL] TO FORM NEW [FIR]

CALL ROUTINE TO GENERATE T

THE BCF OF [FIR]

GENERATE THE LIST C OF
LISTS THAT CONTAIN ALL

LISTS OF T WHICH HAVE NO
COMPLEMENTED LITERALS

RETURN C AS THE

LIST OF KEY LISTS

(STOP

Fig. 19. Routine to generate a list of

key lists (find-the_keys).
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*-Public find.the..kew~s/3keus/1.
Publc sove-fr-kos/,mainthing/1,

IS These are the operators:* 0+0 is logic ORP'S'*
/* is logic AND, VI
/* 0"~ is logic NOTrand O=>0 is VI
IS logic implication. 5

:-OP(690,yfx,+).

:-Op (500, xfv, )

IS mainthing(APA) is a routine to time the 5
IS functional dependencw generation algorithm and*/
/* the kew generation algorithm. mainthing also *
/* calls the routines to generate the functional *
IS dependencies and the kews for a relation.s S

/* A is the list of attribute swmbols. S

mainthing(CXILJ) :-timeoT),
mainthingi (EX:L31X!L3) ,timeO(TI),
close(propa)vTime is T1-Tr
write('Time for functional dependencw '),
write('generation is ')v
rlpwrite(Time)pwrite('ms'),nl,
solve-.for..kes(X13) rclearfilesl.

/* clearfilesi is a routine to delete the data *
/S files dat, list, and blake. 5

clearfllesl:-see(dat) ,rename~datC:I),see(list),
rename(listvCJ)
see(blake)vrename(blakeC3)#

NMW P40 SA-MFU
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1* mairethingl(APA) is a routine to generate all *
1* of the functional dependencies of the relation*/
/* stored in the file dbase. "A is the list of *
1* attribute swmbols. *

mainthing(EJ,PQ))-!
mainthingi(CX:L),CPIQ3) 0-getdatalist(X,[PQJ3tZ!K)

genblocksl(N,1llCHIT),umattr(XEP1Q),Pl),
forrpartition(EHT)Pl),rerovec(XEPG),t[HlTl]),
length((HIT3,M),(formfuinction(CHI1TlJM~lX),
convertpos(X),formdeps(X);true),clearfiles(MX),

/* getdatalist(XYLFLlPM) is a routine that *
/* returns the list Li of unictue data values *
1* found in the column X of the database *
/* stored in the file dbase. The list L of *
/*-attributes for the database must be given
/* along with the length M4 of this list. L
/* includes the attribute X. This list must be *
/* in the same order as the columns of the dbase *

getdatalist(XCYL3,tZIK3))-numattr(XEY:L),N),
see (dbase)v
getdatal (NvEH T3) nodups(CH T],CZ K3) seen.

1* numattr(XPLPZ) is a routine that returns N the*/
/* numerical Position of the attribute X in the *
1* list of attributes Le

numattr(XvCY!LJN)O:-X=YN=I*
numattr(XPCYILJN8-numattr(XLNl),N is N1+1.

/* getdatal(NvH) reads a tuple(row) from dbase *
/* and returns H all the data values found in *
/* column N of the database.**
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/* getdata2(NPBPC) determines if there are no V
1* more rows in the database and returns Cr an *
/* emp.tw list if this is true# Otherwisep the *
/* nth data value of the tuple B is Placed into *
/* the list of values C and another raw is
/* obtained bw getdatai. *

getdata2(NXCYIT3)-nthinlist(NXYPI),

/* nodups(LpLl)p removes anw duplicate dataV
/* values from the list L and returns this *
/* revised list Li. *

nodups(C2,C3).
nodups( CH: CZ K3) -member(HT) ,nodups( TvEZ K3)
nodups(HT)rH:K)-nodup's(TK).

/* nthinlist(NLPYPM) returns the nth data value *
/* Y in the tuple Ls MI is a counter.

nthinlist(NPCXIL39XPM) -MliN.
nthinlistcNvrXIL),YpM)*-Mi is M?1i

nthinlist(NPLPYPMI).

/* listofparts(JPN) inputs a listof unioue data V1
/* values, and outputs N the number of Partitions*/
/* of this data list stored in the files Pi,...PN*/
1* where N is a number to be determined. *

listofparts(JNM):-length(JPY),YI Is Y+i,
NI is Yi/2r
formblockl(ONiJXKi),testn(NCXKl),M),



94

/* listofpartsl(M,[XIL]rC) inputs a number N, a *I
/* partition EXIL] in a list of lists farm, and */
/* outputs a list of lists C which is a new *1
/* Partition of EXIL]. Everv list X in CXL] */
/* will have been separated into two lists and */
/* inserted as two lists in the list of lists C. */

listofpartsl(N,[],[):-!.
listofpartsl(N,[H:T],[XlK21U]):-length(HY),

Y1 is Y+i,
N1 is Yi/2,formblockl(O,Ni,H,XiK2),N2 is N +1,
listof artsl(N2,TU)°

I* *I

/* formblocki(Z,N,L,L1,K) inputs the value of a */
/* counter Z, a list of data values L, and */
/* outputs two new lists LI and K which consist */
/* of a Partition of the list L. The number of */
/* of elements reauired to be in the list Li is */
/* input as the number N. 1

formblocki(Z,Z,K1,C,K1)i-!.
formblocki(Z,NlEJIK],CJ:L],Ki):-Z1 is Z+i,

formblocki(Z1,Ni,K,L,K1).

/* testn is a routine to call writepart. */

testn(OHM) :-writepart(O,H,M)°
testn(NCH:T],M):-writepart(NEH:T],M).

/* writepart(NL) is a routine that writes the */
/* Partition L in the file P(N+i). N is an */
/* input number and L is a list of lists. This */
/* routine also calls testh(A,B).
I**



writepart(NHPZ).-N1 is N+1g'name(N1rM)?
concat(c1123FMPP)p

* name(PlP),tell(Pl),write(H),write('.'>,
* toldttesth(HPN~IPZ)o

/* testh(CHIT),N) inputs a number N and a *
IS Partition CHT), which is in a list of lists S
/* form. N is the number associated with the file*/

* IS PN where CHIT3 is stared. The length of the S
IS list H is tested. If the length is less than 5
1* or eaual to twat then the routine testt(TPN) *
IS is called. Otherwiser the N+lth Partition is 5
1* formed bw calling listofpartsi. 5

testh(:H1T),NvM) :-lenith(HyY)v
(Y=<2Ftestt(TYl4,M);

/5 testt(TPN) inputs a list of lists T and a 5
/* number N. It T is an emptv list the routine 5
1* succeedst otherwise testh(TN) is called.

testt(C),NPN) :-!.
testt(TvNvM)*:-testh(TyNvM)#

1* genblocks(APBFCPD) and genblocksl(APBPCPD) 5
IS are routines to form a list D of two-block *
IS Partitions that are maximallv skewed* A is 5
IS the number of Partitions and both B and C are *
IS counters.*S

genblocksl(ZZPMPCX3) :-getname(ZPB) ,see(B),
read(X) ,se@nvtest2(X)#

genblocksl(ZPNPMPCX:LI) :-getname(NPB ,see(B),
rad(X) ,seenvgenblocks(ZuNML).

menblocks(ZPNPMPCXIL3) :-getreame(NPB) ,see(B)r-
read(Y) seeno
ietapart(ZN,1,TY),?T-CX3,(Z=NL-C3;NI is N + It
99nblock%(ZrN1,1vL))#
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tenblocks(ZvN,?lL):-getname(NEi),see(B)p
read(X) ,seengetapart(ZNMLX).

1* test2(CX:L3) is a routine to test if the *
/* length of each list X in CX:L3 is less than 2 *

test2(CJ):-!.

1* 9etaPart(AE'pCvDvE) returns E a maximally *
IS skewed two-black Partition. 5

getapart(ZNMEXliL13,1X:L3):-MI is M+Iv
9etblock(ZvNMIpEX13vXvL)?
N1 is N+1p~etaPart(ZpNI9MIpLiL).

1* Aetblock(ApBvCrDFEpF) and getblocki (ApBvCPDPE)*/
/* generate a block of -the Partition. 5

Y1 is Y+ivN2 is YI/2r
getblockl(EH:T)pON2,WV)Pconcat(CW~vCV2,X).

getblock(ZPNMXJEHTJHiTl3)'-
lenath(EH:TJY)pYI is Y+1PN2 is Y1/2,
Metblock1(EH:T,ON2vWvV),
4etblock(ZrNpNEXI :L13,Hiprl),
formsome(1WpVJEX1 :L1],X).

9etblock1(HvN2vN2,EJH8*-!.
9etblocki(HNNvXvH) :-!.
Eetblocki(CHT~pCvN2,HTlV):-CI is C+1,
9etblockI(TpC1vN2,TiiV).

/* getname(NvB) is a routine to form the file 5
/* name B=PNp where N is a number. 5

ILI5
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ietname(NPB):-name(N,M)pconcat(112,MV),
name(BV),!.

/* formsome(ABC) forms a Partition C from two */
/* blocks A and B. V/

formsome(EW,V],EX],Z):-formsome(EW,V],X,Z).
formsome(CW,V],[A,B],tX2,L2]):-concat(W,A,XZ),

concat(V,B,L2).

/* formpartition(XY) inputs a list X of Y two- */
/* block partitions. Each Partition is a list *1
/* containing two lists or blocks. This routine */
/* will form 2Y files such that each file V/
* corresponds to a block in a Partition. Hence,*/
/* Y copies of the file dbase will be created. V/
/* These new relations will onlv contain data */
/* values not found in the Partitions.

formpartition(EXIL],P):-see(dbase),
formPartsl(CX:L],P),
seenvtold.

I* formPartsl(CXIL],RP) Performs two different *I

/* tests on a row from the relation. Test I *1
/* determines if the last row in the dbase has *1
/* been Processed. A true response will initiate*/
/* test 2. A false response will call the routine*/
/* Partl. Test 2 determines if the last Partition*/
/* has been Processed. A true response will */
/* terminate the routine. A false response will */
/* increment the counter R and call formpartsl. */
/* */

/IZ ZZ Z ZZZ ZZZZZZZZZ

I
b
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for,Parts(CX:LJRP>:-read(G)'
(G-end-.of...file(L=C3;RI is R+IP
close(dbase),see(dbase) ,formpartsi(LiRiP) >1
Partl(XPCX:LJGpRplpP)).

Part1(CYINJCXL3PCA:BPRQP)-CZK3)Y
compare-.the-.value(Zp CA B3 P, 1),
name (RPF) ,name(QE)p
writetup'le(ZCA2D),CHIT)write(EHIT)write( '.'),
nl~formparts1(EX:LJRP).

1* Part1(LLlL2PRGN) P'laces the tuple L2 from *
1* the file dbase into the file PROP which is the*/
/* Qth block of Partition R. This is accomplished*/
/* bw testing for membership of a data value in *
/* block Q of Partition Rv in the tuple L2 and *
/* writing this into the correct file. *

Partl(CY IN), CX IL),CA 1B) uRuuP) -length(YNI) ,N11,
PartI(NPCX:L)3rCAB),R2PP).

Parti(CYIN),CXIL),CAIB3,RQPP)Z-CZIK3=YP
Part1( CK 1N],CX I U ,CA B) uRuirP)9

1* writetuple(ZyLrLI) returns a list Ll which is *
/* a subtuple of the tuple L with the data value *
/* Z removed. *

writetuple(ZCZD),pB)*-!.

/* removec(XPLPLI) is a routine to remove the *
/* attribute swmbol X from the list of attribute V1
/* symbols LP and return this new list LI*

removec (X vC) 'C3)0 -!
removec(XCX:L),L)*-!.
removec(XCH:TpEH:LI3)-removec(XPTPLl).
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I* compare-thevalue(ZLN,C) determines if Z is *1
/* the Nth date value in the tuple L, using the */
/* counter C. */

compare-the.vale(ZC],N,N) :-fail.
compare-the-vale(Z,Z;B],N,N) -!.
compare-the-valueZ,EA B],NQ):-

N>Q,Q1 is 0 + 1,!,
compare-the-valJe(ZBNQ1)0

/* formfunction(ABCD) is a routine to form a /
/* Product of sums formula which contains all */
/* information necessarw to generate the
/* functional dependencies with attribute C on */
/* the right side. This Product of sums formula */
/* is stored in the file EC where C is the */
/* attribute swmbol. A is the list of ordered */
/* attribute swmbols with C removed. B is the
/* number of copies of the relation. D is a
/* counter used to access the correct copw of the*/
/* relation. */

formfunction(G,M,N,C) :-tell(temp),
gettuPlel(NX),
goettuple2(NZ),
formean(X,X,Z,Q,M,N,C),!.

/* gettuplel(NX) returns X a tuple of file PN1 /
/* if all the tuples have been read X = C ]. 3.

gettuplel(NX) :-name(NZ),name(1PY),
concat(Z,YPW),concat(C1123,WM),
name(PvM),see(P),read(X1),
(Xl-end-of-fileX=[],seen;X=X1),!.
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/* gettuple2(NPX) is identical to gettuple1 *
/* except file PN2 is accessed# *

settuple2(NPZ) :-name(NPX) ,name(2vY),
concat(XYPWa) ,concat(E1123,tWM)p
name(PPM) ,see(P) ,read(Z1)r
(Zl=end-.of-fileZ=CJseenZ=Zl),!.

/* formean(APBPCriErFPGH) is a routine to test *
1* for non-identical date values in the tiuples *
/* from PGl and PG2. Originallw A=B from PG1P C *
/* is a tuple from P02, D arnd E are lists of *
1* attribute swmbols with the swmbol H removed, *
/* and F is the number of data files. If B=Cy nio*/
1* functional dependencies ex-.ist and formean will.*/
/* fail. If the tuples are differentr the first *
/* data values of each tuple are tested for *
/* eaualitw# If thew are enualp the rest of
/* tuple B will replace B and the rest of the *
/* tuple C will replace C in the next call of *
/* formean. If the data values are different, *
/* the attribute svmbol associated with these X
/* values is stored as a literal in a sum in the *
/* file temp. If' there are rno othe~- data values ~
1* in B and C? testtuple is called* Otherwise *
/* formean2 is called.**

formeon(PPCX!LI, CZ tCI,0,CA B] M ,NC)O*
CX1L3CZ!K], ! fail.

formeen(PYCX:L3,rzIK],QrA:BJMNpc):-X=z,!,
formean(PPLPKQPBPMPNPC), I.

formeen(PPCXL~,rZ2K],0,CAB,I1,NC) :-
write(A),CL=C3P
gettuple2(NZ1) ,testtuple(PXZ1 ,0,CA BJMvNC) P
formean2(PLPKiQBPMPNC)),!.
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/* formean2(Av3rCvDEvFvGyH) is a routine similar*/
/* to foreean. The onlw differences are that A S
1* is the comlete tuplo of p~l, B and C are parts*/

* /* of the tuimles from POI and PG2, and E is the S
/* associated Part of the attribute list. Also' 5
1* it the subtuples 9 and C are eaualp there wlll5/
/5 be no more literals Placed in the sum stired 5

* 1* in the file temp. 5

formeon2(PEX:LJEZtKJQCA:B .MNC) -
EX:L3CZKpwrite( /.' ) nlp

formeon2(PuEX:LJEZIK],QEA:BIMNC)?6-X=Z,',
formean2(PvLqKvGDHNC),!.

formeen2(PvEX!L3,EZIK3,QEA:B3,MNC):-write('+'),
* write(A)P(L=CJvwrite( '. ')nlr

gettuple2(NZl),testtumle(PPZlQCA:B),MNC);
formecan2(PvLrKFQE4,MNvC))v!.

/* testtuple(AvBPCPDPEFPGPH) is a routine to 5
1* test if there are no more tuples in the file 5
1* P62, If this is true, testtuplel is called, 5
/* otherwise formeen is called with the new tuple*/
1* C from P02. 5

testtuple(PXZQAl1,NC) :-Z=CJvgettuplel(NXl),
testtuPlei(X1,XlZQQMNC),!.

formean(FPvZvQyQrMvNrC)P!.

/* testtuPle1(ArBvCvDvEvFvGyH) is a routine to V/
/* test It there are no more tuples in P6l. If V/
/5 this is truer the file temp is closed and the V/
/* routine andtamp is called to generate the POS V/
/* formula. It this was the last data filev the V/
/* routine changeit is called to delete anw V/
/* extraneous sums in the POS formula* Then V/
/* formalph is called to form the logical AND of V/
/* each formula generated by each data file. If V/
/* this was not the last data file? the routine V/
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/* changeit is called to absorb an extraneous *
1* sums in the P05 formula arid the next data file*/
/* is examined.

testtuplelCPPXrZQAMaNC) :,-X=EJttold,
see(temp) ,read(Y)v
andtemp(NPY) ,(N=M~changeit(N),
formalph(MvC~e,1);N1 is N+lvchangeit(4)v
formfunction(QPMPN19C))P!.

gettuple2(NZ1)vformeen(PPPZ1,QAMNC),!#

/* andtemp(NPX) inputs a sum of attribute swmbols*/
/* Y from the file tempt and calls andtemp2. *

andtemp(Nend.of-.file) :-'.
andtemp(NPX)*-getnaie(NB),tell(B)write('('),
write(X),write(')')reai(Y),andtemp2(NY),'.

1* andtemp2(NPX) writes X as a Product of the *
1* P05 formula stored in the file PN. *

andtemp2(Nvend-of-.file)*O-
nlyseenytold, 1.

andtemp2(N'X) :-write' '') uwrite( '('),
write(X),write(')'),read(Y),andtemp2(NPY),'.

/* formalph(MrCreYN) inputs the number of data *
/* files 1, the constant *, the attribute swmbol *
/* Cr and tests if the PN contains the last P09 *
/* formula# If this is true, the formula is
/* stored in the file @C9 Otherwise X - the P09 *
/* formula and formalphI(XMCveN) is called.# *
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formalph(IfCeP@N) :-M=Npgetname(NV) ,see(V),
resd(X),seenpname(CPZ),name(eK),
concat(KvZDB) name(LPB) ,tell (L) ,write(X),
write( '.') toldi

formalph(MCPeN) :-getname(NV) ,see(Y) read(X) Pseen,
NI is N+ivformalPhi(XPMvC~eN1),!#

/* formalphl(XPMPC~eN) is a routine similar to *
/* formalph except that X is the list containing *
/* all of the POS formulas for the PN data files.*/
1* this final list is stored in eC if the last *
/* formula is in Xv otherwise formalphi is called*/

formalp'hi(QMC~eN):-M=Npgetname(NW)see(W),
* read(X) ,seen~concat(QPXPZ)r

name(CgL) ,name(eK) ,coricat(KLB)v

writeCF) ,writo( '.'),toldP'.
formalphiCQvpC,.vN) :-getname(NvW) ,see(bJ)v
read(X)Pseenrconcat(OXPZ),
NI is N+1PformalP'hi(ZPMqC~ePNi)P!*

/* changeit(N) converts the P05 formula in the *
/* file PN to a list of list form bw calling *
/* nParse. Also, anw extraneous lists are deleted*/
/* bw the routine abspr. This new list is stored*/
/* in the file PN again* *

changeit(N) :-nam.(NPz) Pconcat(Cll23PZPJ) Pname(PW),
see(P) P it (C) , etstr(C P5) vseenvnparse( F 121) v
absPr(FPC3PU)v
tell(P) ,write(U) ,write( '.'),told,! .
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/* convertpo%(C) inputs the list X of lists form *
/* of all the P06 formulas stored in the file eC#*/
1* The list X has all extraneous lists absorbed *
/* bw the routine abspr# This new list Z is *
/* stored bwi the as a P09 formula Q in the file *
/* eC. This formula 0 is translated into a SOP *
/* formula bw simp(Q2vK). Then K is stored in the *
/* file eC. The ascii code for K is input and *
1* converted to a list W of lists form. Then the*/
/* extra lists are absorbed bw abspr(W9tyV). *
1* Finallw, the list V is stored in the file eC. *

convertpos(C)V-name(CH),name(eN),concat(NMP),
name(LrP)vsee(L)yread(X)r
seentabspr(XEhvZ),tell(L),writeeo(Z)v
toldrsee(L)Pread(Q)Pseen,
simp(QK),tell(L),urite(K),told,

* see(L) ,aet(S) ,getstr(SN1) ,seen,
* ~Parse(IduNlC3),abspr(&4PC2,V),tell(L),write(V),

write( '. )rtold, I.

/* writeee(A)p writeeal(A)v writeea2(A inputs a E
/* list A of lists and stores a P06 formula in *
/* the file eC that corresponds to this list. E

writee(CX IL3) ?-write( '(' ) , K3=Xvwrite(Y)v
writeeal(K) ,writee*2(L)y!#

writeeo ( C3) -write( ')')Y,
writeeol(EYIK]):-write('+'),write(Y),writeeal(K),!.
writee2(C3)*-write('.')r!
writeee2(CX:L3) -write( I'l) write('/(') ,CY!K3UXv

write(Y) ,writeeei (K)p
writeea2(L)?!#

1* Npars&(Z) returns Z a list of lists for a POS *
/* formula.*2
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nparse(Z) -- > nterm(X)y'&Spnrestparse(XrZ).
nparse(CZ3)-->nterm(Z).

/* Nterm(Z) converts a term in the P06 formula *
/* into a list* *

nterm(Z) -- > ndelimpntaken(X),ndelimpnresterm(XvZ),!.

/* Ndelim removes the following swmbols from the *
1*list created bw ntermp &+',(p). *

ndelim -- > '+'PI.

ndelim 80.
radelim ->(!

ridelim *->)Or!.
ndelim ->rn,!.

IS nresterm(XPY) sets the first element of list *
1* Y to the element *
/* X, and calls nterm to find the rest of the S
IS list Y# *

nresterm(XPEXIR3) -- > nterm(R).
nresterm(XPCX3) -- > C3.

/* ntoken(Y) returns an atom Y for a member of S
/* the ascii list.**

ntoken(Y) -- > CXJrC963P,{name(YEXp963)Ip!s
ntoken(Y) -- > CXJp-{name(YPCX3)PY='&'Ip,
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/* nresparse(XY) sets the first element of the !
/* list of lists Y to be the list X, which 2/
/* corresponds to the first term of the POS 2/
/* formula. nrestparse then calls nparse. *1

nrestparse(XPEXIR3) --> nparse(R).
nrestparse(X,[X]) -- > [].

l* formdeps(C) writes all the functional 2I
/* dependencies with attribute C on the right */
/* side that exist in the relation into the file */

/2 Propa. 2/

foradeps(C)'-9etlist(CCXIL3),
tll(propa),formdepsl(CEXIL]).

/2 formdepsl(CL) inputs an attribute C and a !
/* list of lists L. L is a list of all the left 2/
/ sides of the functional dependencies in the !
1* relation. This calls getterm and itself until*/
/* until L is an empti list. */
/2K 2KltlIIillllitillii~ll~ !I

formdepsl(CC]):-!.
formdepsl(CPX:L]):-9ettem(CX),formdeps(CL).

/ Metterm(CL) inputs C the right side attribute*/
/* swmbol and a list L of attributes for the left*/
/ side of a functional dependenci. 2

getterm(CPCZlK3)'*-K=Clrwrite(Z)v

write('n >'),write(C),write('.'),nl.
ietterm(CCZK]):-writ.(Z),write('5'),gtterm(CK).
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/* / etlist(CL) inputs an attribute C and returns*/
1* a list of left sides for functional *1
/* dependencies that was stored in the file EC. */

getlist(CX) -name(CG),concat(ClO1,uG,V),
name(MV),see(M),read(X)vseen.

/* clearfiles and nosubscripts are routines to */
I* delete the data files used in the functional *I
/* dependencv generation routine. */

clearfiles(N,X):-name(XZ),concat([lO1],Z,W),
name(WIW),tell(W1),rename(Wl,[]),
tell(temp),rename(temI]),nosubscripts(N,1).

nosubscri'ts(NM)#-rname(M,M1),
concat([l12],MIM2),concat(M2,[49],M3),
name(M4,M3),tell(M4),rename(M4,E]),
concat(M2,[50],M5),name(M6,M5),
tell(M6),rename(M6,I:),name(Q,M2),
tell(Q),rename(QCJ),(N=M;Z is M+I,
nosubscripts(N,Z)).

/* The SOP formula to be Put in Blake Canonical */
/* Form is represented as a list F of lists and *1
/* each of the lists in F corresponds to a term */
/* in the SOP formula. * The method of iterated */
/* consensus is used. doitall is a Procedure to */
/* time the routine for Propositional logic to */
/* BCF translation. doit is a routine to read */
/* in the Propositional lolic statements and */
/* return the BCF of them. doitl converts the */
/* Propositions into a SOP form. bcfs inputs a */
/* list of lists and outputs the BCF of this list*/
/* as a list of lists. Parseit Parses the SOP */
/* formula into a list of lists. */
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/* kews is a routine to input the information *
/* needed to locate the kews of a relation# The *
/* BCF form of the functional dependencies must E
1* be stored in the file BLAKE. This routine *
/* also Prints out the time for the execution *
/* and the kews. L is the attribute swmbols. E

1* */rPes()*dotlpkw()

doitall#-timeO(T),doitytimeO(Tl),Time is T1-Tr
write('Time 'for bcf is ')Ynlp write(Time),
write('ins.') ,nl *

doit*-see(propa),read(X),(comp~are(=,Xvend-of-file);
trans(XrZ) ,tell(dat)v
write(Z)rdoitlpnlpseenytoldpparseitvbcfs).

doitl.'-read(X) ,(compare(=PXendof-.file);
write( '+')p
nlvtrans(XvZ) rwrite(Z) vdoiti).

Parseit*-see(dat),Eet(C),getstr(CPX),
Parse(PXrC3)
tell(list),write(P)gwrite('.'),seenvtold.

bcfs*-see(list),read(X),seenvbcf(XPZ),
tell(blake) ,write(Z) ,write( /.'/) ,told.

kews(L) :-timeo(T' see(blake) ,read(Y) ,seeny

Time is T1-Trwrite('Tiue for kew search is ')p

bcfit(LX:LJCZU(])':-tiineO(T)p
bcf(CX:L~pCZIK3),timeO(Tl)p
Time is Tl-Trwrite('TIME IS ')Pnlp
write(Time) ,write('ins').

/* bef(APS) returns 8 - BCF(A). E

bcf(CX:L~vEZ!K3)-testit(C3,EX:L,MN),
bcf1(CX:L3vCM39NPCZ:K3)o
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/* bcfl(A,B,C,D) generates a list of consensus V/
/* lists between the list C and the list of */
/* lists B. The list of consensus lists and the V/
/* list B of lists are tested for absorptions. *
/* The new left Part of the list A along with the*/
/* next list of B is determined and bcl is *
/* called again. The BCF of the list A of lists *
/* is returned. *

bcf1(EX:L],EM:R3,E3,EX:L]).
bcI(EX:L],EM:R],NEZIK])*#-consc(EMIR],NC),

abspr(C,[XIL],CY:S]),
(member(NrYIS]),starti(NrYIS],M1,Nl),
bcI([YIS],M1,NIEZIK]);
reverse(MIR],[X2:L2J),

testit(rX2:L2],CYISJ,M1,NI),
bcfl([YIS],Ml,Nl,[ZIK])).

/* */

/* abspr(A,B,C) checks for absorptions between *
/* the list A of V
/* consensus lists and the old list of lists B. *V
/* C is the new *
/* list of lists formed after all absorptions. *

abspr(CYIS],E],EHlT3):-a~spr(SEY],EH:T])°

absmr(EJEX:L],CXIL]).
abspr(EYISJrX1L),EZIK3):-absp(YCX:L,CX11LI]),
abs'r(SCX1IL1JCZIK3).

/* startl(A,B,C,D) determines where the old next /
/* list A is in the new list B of lists, and *
I* returns both the new next list D and the new *
/* left Part C of the list of lists. *
/* */
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startI (NCJEJCJ).
startl(NPCY:SJCM13PNi)*:-N=Y,

Ml=NPEN1 L3=S.

starl(NiYIS~E~lLp~l:-strtl(PSPLN*1

/* testit(APBCPD) determines if the first list *
/* of the list A of lists is in the new list B. *
1* The new left Part C and the new next term Dl *
/* is returned. *

testit(EX2:L23,1Y:SJMlNl)'-member(X2,CY 63)
start1(X2rI:S),M1?N1).

testit(CX2:L23,EYIS),MlNl) :-testit(L2,CY:SJM1,Nl).
testit(CJCYSJYX)-[X:L3S.

1* *1CrY~CYrC)

/* reverse(APB) returns B the reverse order of A *

reverse(EXJCX3).
reverse(CX9Y],tYyX3).
reverse(CX:RJL) :-re~ arse(RLl) ,concat(LI,1EX),L).

/* coneat(APBPC) returns the list CP comprised *
/* of the list B app'ended to the list A.#*

concat(C),LvL),
concat( CF!L13,L2, CFIL3J )-
concat(LiL2rL3).

/* Metstr(ArB) returns a list of ascii *
/* characters. *



Aetstr(26vt2 8-I.

1*srCCI39-e(C)gtt(~R,~

/* time is a routine to call the internal
/* timer of the swstem. *

timeO(T):-statistics(rustime1T...).
time:-statistics( runtime, C..PT3) write(T) ,nl.

* 1* neg(APD) is a routine that returns the *
1* complement B of a *

1* boolean expression A.

neg(X' Yr.) -X, Pe~(YB)l
neg(X+YA338*-neoX7A)negC-*Y9),!.

neg(XY)*-Y-X' P!.

1* simp(APB) and mult(CPD) are routines that *
/* return the sum of Products form of a formula *
/* that is in Product of sums form. *

simp(XzXX8:-!.
simp(X+XpX):-'.
simp(X+YPZ)8-simp(XPR),simp(YPS),(Z)-(R+S) P!#

simp(XpX)'-!*
mult(XpXpX) -!*
mult(A+BPC+DPZ) :-mult(APC+DPY),
mult(BC+DrX)v,(Z)-(X+Y)F!.

mult(AIBvAvA&B) -!
mult(AIBrBvAIB) -!.
uult(AvA&BvA&B) -I*
mult(SvA&BvAIB38-1.
mult(A+BuCPZ) :-majlt(APCX) ,mult(3,.CvY) ,(Z)a(X+Y),!.
mult(CPA+BZ) :-mult(CPAPX) ,mult(CDY) ,(Z)a(X+Y),I
mult(XpYpXtY8:-!*
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/* trans(APB) is a routine that translates a *
/* Propositional logic statement A into a SOP *
/* formula B. *

trans(Yin>YPZ) :-neg(YPW) ,simp(YaWZ).

/* absp(APBPC) returns Cp a list of lists *
1* corresponding to a SOP formula. C is the *
/* result of Performing~ absorption on the SOP *
/* formula B with the list A. A is a list and. *
1* B is a list of lists. *

absp(E),EXIL2,XL3)'-!.
* absp(ApEJEA3) :-!.

absp(A, CX L~CX IL3) -sublist(XvA) I.
absp(APCX:L),CZ:R3)'-sublist(APX) vabSP(ALvCZIR3), I.
absp(APCXIL),CXR) -absp(APLR)P,

/* sublist(AEi) determines if the list A is *
/* contained in the list B. *

sublist(CXIL],CY;S) -member(XPrY:s)
sublist(LPCY:S),

sublist(t),M)*-!.

/* member(APB) determines if the element A is
/* contained in the list Do'K

member(XPCXR3)*-!.
member(XvCY:R3) :member(XR>, I.
member(CJX):-!.
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It consc(APBPC) returns a list C of lists *
/* consisting of all consensus terms between the *
/* list A and everw list contained in the list B
/* of lists. List C consists of non-emptw lists. *

consc(CXIL3iYvEZIKJ):-cons(EX:L3,YPfll:L1J),
delete(CM:L13pCZIK3).

1* delete(APB) removes anv emptw lists contained *
It in the list of lists A and returns the list of*/
It lists B which is void of anw emptw lists. *

delete( MLi) 1Z K3) ) compare(= Ll, E JJ)

compare(=,LIyE3) iIZ:K3=CfM8LI2
Z=Mpdelete(LlPK)).

deletel(MPCM3I),

it cons(AE'vC) returns a list C of lists *
It consisting of all consensus terms between the *
It list A and everv list contained in the list B *
1* of lists. The list C maw contain emptv lists.*1

coris(E),YPX)#:-t3=..X.
cons(EX:L],YCMlLl3J-testconsl(XPYYYZ),

(compare(=,Z, 3) cons(LY, EM Li3)
compare(=PZEEJ3)),!cons(LYCMHL1)
M=Zvcons(LPYPL1)).

cons(CXIL),YEZIK3)-cons(LYCZ:K)
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/* testconsl(Ar~vCPD) tests for a literal in *
Is opposition between the list A and C. D is the*/
IS returned consensus term. B and C are *
IS are identical when testconsl is originallw*
IS called. If no literal in opposition is found.*/
IS D is set to the emptw list. If a literal in S
/* opposition is found testcons2(VPWPXPYPZ) *
/* is called. 5

testcors1(A:C],YrC),1).
testconsl([A:CJpY'EB:D~vX):-sublist(IB),CAlC3),

testconsi (EA;C~,YvDvX).
testconsl(CAICJYEBID)X)*-neg(BG),

* sublist(EGJCA:C)
testcons2( CAlCJ pYDp CD PG6 X).

testconsl(CA:C),YCBlD3X)-testcons(EA:CYE',X).

/* testcons2(AvBrCvDrE) tests for a second
IS literal in opposition between list A and C.o 5
/* Lists A and 9 are the original listsy list D *
/* contains the first literal in opposition and *
/* its complementy and list E contains the 5

* /* consensus term, If a second literal in 5
/* opposition is found r E is the emptw list. 5

testcons2 (CA IC ,Y, CD ,G), CZK3)
formit1( CA1C) ,Y, CDG)CZ 1K ).

* testcons2(CAICJYCE:L),CBG),X) #-neg(EPF),
sublist(CF),CA1C),C =,,X,

testcons2(CA:C3,YvCE:L,CDG),CZZK3) :-
testcons2(CAIC~pvLCBG),CZ:K3).

/* formitl(ADCpD) Places all non-opposition 5
./* literals in list B into the consensus list D# *
IS List C contains the opposition literal and 5
/* its complement.*5
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formitl(CAIC3,CJCBG),EZ:K) -.
formit2(CAICJCBrGCZIK3).

formitl(CAfCJCD:E3,CBGJCZ:K3) :--DD
formitiC CAIC] ,EvCBrG),CZIK3)
formitl(CAC~vCD E~vDG)CZK3)*-
sublist(CD2,CA:C3)p
formitI(CAIC2,ErCBGJCZ:KI)

formitl(CAICJCDIE3CBG]CDK3)-.
formitl(CAIC3,EvCBrG],K) *

/* formit2(AvBPCPD) Places all non-opposition
/* literals of list A into the consensus list C. 5
/* List B contains the opposition literal and *
/* its complement.*5

formit2(C),CBPG),EJ).
formit2(EA:C),CBGJX)-G=Aformit3(CiX).
formit2(CAIC),CBvG3CAIK3):-formit2(CIBG3vK).

/* formit3(APD) sets the tail of A of a list to 5
/* be the list B. 5

formit3(CPC).

1* Parse(Z) returns Z a list of list from a *
/* SOP formula.#5

Parse(Z) -- > term(X)r'+'rrestParse(XPZ),
Parse(CZ3)-->term(Z)*

/* term(Z) converts a term in the SOP formula 5
/* into a list *S

Li A/
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term(Z) ->delimptoken(X)pdelimpresterm(XZ),!#

/* delim removes the following symbols from the *
/* list created bw term(Z)F blanks, &P +P It (,)#*/

deli. -- > vdelim,
deli. -- >* delim,'.
deli. -- > ('delimp!.
delim -- ') m vdelimp'.
deli. 30

/* resterm(XPY) sets the first element of list Y *
/* to be the element Xv and calls term to find *
/* the rest of the list Y. *

rester&(XPEXIR3) -- > tera(R)#

resterm(XEX3) -- > [I*

/*K token(Y) returns an atom Y for a member of *
/* ascii list.

token(Y) -- r~C963,{name(YEX,96))r!.
token(Y) -- CX~viCname(YPCX3)vY\=='+'},'.

IS restparse(XPY) sets the first element of the 5
/* list of lists Y to be the list Xv which 5
/* corresponds to first term of the SOP formula.*1
/* restparse then calls Parse.,5

restrarse(XCXIR3) -- > Parse(R)s
restpors@(XPCX3) -->C.



117

/* find-the-kes(ABC) inputs a list A of V
/* swmbols representing all of the attributes V
/* for a relation in a database, and a list B V
/* which corresponds to the BCF of the functional*/
/* dependencies of the relation. The list C V/
/* contains the list of kews for the relation. V/

?ind-the-kews([XIIL1],[X:L],[F:R]):-

bcfl([XIL],[X:L],CXI:L1,[ZIK]),
deteyine(EZ:K],[FIR]).

/ * *1

/* determine(AB) inputs the list A of lists *
/* corresponding to the Blake Canonical Form of V/
/* the functional dependencies and list of */
/* attribute swmbols for a relation. The list *1
/* of kews B is returned. V/

determine(E],[]).
determine(CZ:K],N) :-(neasin(ZM),
N=CXIL],X=M,determine(KL);

determine(KN)).

/* negsin(A,B) inputs a list A of lists and V/
/* outputs a list B of lists that contain all V
/* the lists of A that have no complemented /
/* literals as members. The list B is a list of */
/* kews of varwing length. /
/*555**555*55*555555*55*55*/

neisin([],C).
negsin([XIL],CHIT]):-CX]-CM'], !,fail.
neisin(CX|L],[XIT]) :-negsin(LT).
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/* write-.kewsl(A)v write-.kows(A)v writ....kes2(B)
/* output the kews and a heading for them, *

write-.kes(HT)*-writ&('The keiis o*#' ')P
nlyrwrite-.keis(CHIT3).

writ*-.keis(CJV-nl.
write. kews(CH T3) -write..kevs2(H) ,write-.kewis(T).
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.twpe dbase
Cal,blPcl,dl].
[a2,b3,cldl].
ralb2,c2,d2].
Ca1,b1,c1,d2].
Ca2,b3,cld2].
Ca1b2,c2,d1.

*run Prolog

Prolo:-10 version 3

C Consulting 'prologini' I
?- restore(cfd).

I closing all active files 3

I restore complete 3

Wes
?- mainthinr([a,b,c,d]).

Time for functional dependencw generation is
4251ms
Time for bcf is
172ms.
Time for kew search is 331 ms.
The kews are:
dca
db

Wes
Wes

?-halt.

C Prolog execution halted 3

' EXIT

.•twpe Propa
b=>a.
clam>b.
b=>c.
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*twpe dbase

Esmjth~surgerw,4,b2P63.
Ejonesppatholoy2paIP,3.
Ejonesvpathologw, 1,c3p53.
Eevarns~anatomvP2Pc3' i0J.
Ejonesypathologwy2pa1 73.
Eevans~surgerwr3Pa23.
Esmithranatomwt,5valu53.

.4 .run~ Prolog

Proloil-10 version 3

* ?- restore(cfd).

I closing all active files 3

E rest.ore comp'lete 3

ves

* Time for functional dep'erdencw genieration is
17148os
Time for bcf is
1541Bms.
Time for kev search is 16090 mns,,
The kews are*#

* - rt

ct

Wes
?-halt.

C Prolog execution halted 3

EXIT
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*tvpe propa

t&c=>P.

t ac=>,.

tr =.'.*c.

r g&t' c.

Plw=::: -'*

cgt=*">r.

c ,jr
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I

-i .*tvpe Propa

c=::bgd.
b=::e ?.

e=>d.
f=>a&d.

*run Prolog

Prolo9-1O version 3

[I Consulting 'Prolog.inil I
: ?- restore(crd).

E closin all active files 3

I restore complete 3

wes
: ?- solve-for-kevs(Eapbrc.,drerf3).

Time for bcf is
1432ml.
Time for kew search is 5971 ms.
The kevs are:
c

:es
S?- halt.

I Prolog execution halted ]

EXIT
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